QuickLogic’s eFPGA Qualified on GLOBALFOUNDRIES 22FDX® Platform for IoT and Edge AI Applications

QuickLogic Corporation (NASDAQ: QUIK), a developer of ultra-low-power multicore voice-enabled system-on-chips (SoCs), embedded FPGA (eFPGA), intellectual property (IP), Internet of Things (IoT), and endpoint artificial intelligence (AI) solutions, today announced that its ArcticPro™ 2 eFPGA IP has been qualified on GLOBALFOUNDRIES® (GF®) 22FDX® platform. 

GLOBALFOUNDRIES Delivers Industry’s First Production-ready eMRAM on 22FDX Platform for IoT and Automotive Applications

Company’s advanced embedded non-volatile memory on its FDX™ platform provides a cost-effective solution for low-power, non-volatile code and data storage applications

Santa Clara, Calif., February 27, 2020 – GLOBALFOUNDRIES® (GF®) today announced its embedded magnetoresistive non-volatile memory (eMRAM) on the company’s 22nm FD-SOI (22FDX®) platform has entered production, and GF is working with several clients with multiple production tape-outs scheduled in 2020. Today’s announcement represents a significant industry milestone, demonstrating the scalability of eMRAM as a cost-effective option at advanced process nodes for Internet of Things (IoT), general-purpose microcontrollers, automotive, edge-AI (Artificial Intelligence), and other low-power applications.

Designed as a replacement for high-volume embedded NOR flash (eFlash), GF’s eMRAM allows designers to extend their existing IoT and microcontroller unit architectures to access the power and density benefits of technology nodes below 28nm.

GF’s eMRAM is a highly versatile and robust embedded non-volatile memory (eNVM) that has passed five rigorous real-world solder reflow tests, and has demonstrated 100,000-cycle endurance and 10-year data retention across the -40°C to 125°C temperature range. The FDX eMRAM solution supports AEC-Q100 quality grade 2 designs, with development in process to support an AEC-Q100 quality grade 1 solution next year.

“We continue our commitment to differentiate our FDX platform with robust, feature rich solutions that allow our clients to build innovative products for high performance and low power applications,” said Mike Hogan, senior vice president and general manager of Automotive and Industrial Multi-market at GLOBALFOUNDRIES. “Our differentiated eMRAM, deployed on the industry’s most advanced FDX platform, delivers a unique combination of high performance RF, low power logic and integrated power management in an easy-to-integrate eMRAM solution that enables our clients to deliver a new generation of ultra-low power MCUs and connected IoT applications.”

Custom design kits featuring drop-in, silicon validated MRAM macros ranging from 4 to 48 mega-bits, along with the option of MRAM built-in-self-test support is available today from GF and our design partners.

eMRAM is a scalable feature that is expected to be available on both FinFET and future FDX platforms as a part of the company’s advanced eNVM roadmap.  GF’s state-of-the-art 300mm production line at Fab 1 in Dresden, Germany, will support volume production of 22FDX with MRAM.

For more information on GF’s 22FDX and MRAM features, contact your GF sales representative or go to globalfoundries.com.

About GLOBALFOUNDRIES
 
GLOBALFOUNDRIES (GF) is the world’s leading specialty foundry. GF delivers differentiated feature-rich solutions that enable its clients to develop innovative products for high-growth market segments. GF provides a broad range of platforms and features with a unique mix of design, development and fabrication services. With an at-scale manufacturing footprint spanning the U.S., Europe and Asia, GF has the flexibility and agility to meet the dynamic needs of clients across the globe. GF is owned by Mubadala Investment Company. For more information, visit www.globalfoundries.com.
 

Contact:

Erica McGill
GLOBALFOUNDRIES
(518) 795-5240
[email protected]

格芯面向IoT和汽车应用推出业界首款基于22FDX平台且可批量生产的eMRAM

公司基于FDX™平台的先进嵌入式非易失性存储器为低功耗、非易失性代码和数据存储应用提供了一种高性价比解决方案

加利福尼亚州圣克拉拉,2020227日–格芯®(GF®)今日宣布基于其22nm FD-SOI (22FDX®)平台的嵌入式、磁阻型非易失性存储器(eMRAM)已投入生产。格芯正在接洽多家客户,计划2020年安排多次生产流片。此次公告是一个重要的行业里程碑,表明eMRAM可在物联网(IoT)、通用微控制器、汽车、终端人工智能和其他低功耗应用中作为先进工艺节点的高性价比选择。

格芯的eMRAM产品旨在替代高容量嵌入式NOR闪存(eFlash),帮助设计人员扩展现有物联网和微控制器单元架构,以实现28nm以下技术节点的功率和密度优势。

格芯的eMRAM是一款可靠的多功能嵌入式非易失性存储器(eNVM),已通过了5次严格的回流焊实测,在-40℃至125℃温度范围内具有100,000次使用寿命和10年数据保存期限。FDX eMRAM解决方案支持AEC-Q100 2级设计,且还在开发工艺,预计明年将支持AEC-Q100 1级解决方案。

格芯汽车、工业和多市场战略业务部门高级副总裁和总经理Mike Hogan表示:“我们将继续通过功能丰富的可靠解决方案实现差异化FDX平台,客户可利用这些解决方案来构建适用于高性能和低功耗应用的创新产品。我们的差异化eMRAM部署在业界先进的FDX平台之上,可在易于集成的eMRAM解决方案中实现高性能射频、低功耗逻辑和集成电源管理的独特组合,帮助客户提供新一代超低功耗MCU和物联网应用。”

格芯携手设计合作伙伴,即日起提供定制设计套件,包括通过芯片验证的插入式MRAM模块(4至48MB),以及MRAM内置自检功能支持。

eMRAM是一种可扩展功能,预计将在FinFET和未来的FDX平台上推出,作为公司先进eNVM路线图的组成部分。格芯位于德国德累斯顿1号晶圆厂的先进300mm产品线将为MRAM 22FDX的量产提供支持。

如需了解更多有关格芯®(GLOBALFOUNDRIES®)22FDX和MRAM特性的信息,请联系您的格芯®(GLOBALFOUNDRIES®)销售代表或访问globalfoundries.com

About GF

GLOBALFOUNDRIES (GF) is a leading specialty foundry delivering truly differentiated semiconductor technologies for a range of high-growth markets. GF provides a unique combination of design, development, and fabrication services, with a range of innovative IP and feature-rich offerings including FinFET, FDX™, RF and analog mixed signal. With a manufacturing footprint spanning three continents, GF has the flexibility and agility to meet the dynamic needs of clients across the globe. GF is owned by Mubadala Investment Company. For more information, visit www.globalfoundries.com.

Contact:

Erica McGill
GLOBALFOUNDRIES
(518) 795-5240
[email protected]

Anokiwave Announces the Full Commercial Release of its 3rd Generation 5G mmW IC Family

Anokiwave, Inc., a leader in providing highly integrated IC solutions for mmW markets and a trusted choice of Tier-1 and -2 OEMs, announces the commercial high-volume availability of the industry’s most advanced and complete portfolio of Silicon ICs for mmW 5G. The latest generation brings a complete RF signal chain solution for all mmW bands in play – 24/26 GHz, 28 GHz, and 37/39 GHz – to the market while providing extensive functionality that simplifies the active antenna array design. The scalable architecture underpinning the mmW 5G IC family supports everything from mmW 5G macro-cells to small-cells to customer premises equipment (CPE) with a scalable architecture that supports each use case.

格芯与环球晶圆签署合作备忘录,未来将长期供应12英寸SOI晶圆

全球领先的半导体晶圆代工厂格芯(GLOBALFOUNDRIES)于2月24日宣布已和全球前三大硅晶圆制造商环球晶圆(Globalwafers.Co.,Ltd)签订合作备忘录(MOU),协议表明环球晶圆将负责对格芯12英寸晶圆的长期供应。

环球晶圆是全球领先的8英寸SOI制造者之一,也是格芯8英寸SOI晶圆的长期供应商,双方长期保持着良好的合作关系。环球晶圆也是12英寸晶圆制造商,基于双方未来发展与稳定供应需求,环球晶圆与格芯有望紧密协作,有力扩大环球晶圆12英寸SOI晶圆生产产能。

格芯计划利用本次协议规定的12英寸晶圆供应,满足业界对于RF SOI技术持续增长的需求。这些技术经过优化,为目前和下一代行动装置和5G应用,提供低功耗、高效能和易于整合的解决方案。

格芯移动与无线基础设施高级副总裁Bami Bastani先生表示:「移动、无线和5G为格芯带来了庞大的商机,目前市场上超过85%的智能型手机,都采用了本公司的RF技术。格芯很高兴能与环球晶圆合作,期盼能共同开发出新增的12英寸SOI晶圆供应链,从而整合到格芯的制程中,进一步满足对于RF SOI技术解决方案不断增长的需求。」

格芯高级副总兼首席采购官Tom Weber表示:“鉴于我们的市场定位,我们和我们的客户都需要建立多样化的12英寸SOI晶圆供应链,同时符合格芯与客户之间的最大利益。环球晶圆则是达成这一目标的最佳伙伴。”

环球晶圆董事长暨首席行政官徐秀兰表示:“很高兴能借着市场向下一代RF应用发展的契机来扩大与格芯的长期合作的伙伴关系。这次合作最终一定会为双方带来更大的成功!”

###

关于环球晶圆

环球晶圆总部位于台湾新竹,为全球三大硅晶圆制造厂商之一。成立于1981年,前身为中美硅晶制品股份有限公司的半导体事业处,并在2011年更名为环球晶圆圆股份有限公司。环球晶圆专精硅晶圆制造,产品应用多元,包括电源管理、汽车、loT、内存、传感器和微机电系统。环球晶圆在台湾、日本、美国、韩国、意大利、丹麦、马来西亚和中国等国家皆有设厂运营,并在台北证券交易所上市。有关环球晶圆的更多信息,请访问https://www.sas-globalwafers.com

关于格芯

格芯是全球领先的特殊工艺半导体代工厂,提供差异化、功能丰富的解决方案,赋能我们的客户为高增长的市场领域开发创新产品。格芯拥有广泛的工艺平台及特性,并提供独特的融合设计、开发和生产为一体的服务。格芯拥有遍布美洲、亚洲和欧洲的规模生产足迹,以其灵活性与应变力满足全球客户的动态需求。格芯为阿布扎比穆巴达拉投资公司(Mubadala Investment Company)所有。欲了解更多信息,请访问 https://www.globalfoundries.com/cn。

媒体垂询:

杨颖(Jessie Yang)
(021) 8029 6826
[email protected]

邢芳洁(Jay Xing)
86 18801624170
[email protected]

 

GLOBALFOUNDRIES and GlobalWafers Sign MOU to Increase Capacity, Supply of 300mm SOI Wafers

Santa Clara, California, and Hsinchu, Taiwan, February 24, 2020 – GLOBALFOUNDRIES® (GF®), the world’s leading specialty foundry, and GlobalWafers Co., Ltd. (GWC), one of the top three silicon wafer manufacturers in the world, today announced they have signed a memorandum of understanding (MOU) to develop a long-term supply agreement for 300mm silicon-on-insulator (SOI) wafers.
 
GWC is one of the world’s leading manufacturers of 200mm SOI wafers, and has a long and ongoing relationship with GF for supplying 200mm SOI wafers. GWC also manufactures 300mm SOI wafers, and under the anticipated supply agreement, GWC and GF will collaborate closely to significantly expand GWC’s 300mm SOI wafer manufacturing capacity.
 
GF intends to use the resulting additional supply of 300mm SOI wafers to meet the growing demand for its industry-leading RF SOI technologies, which are optimized to deliver a low power, high performance, and easy-to-integrate solution for current and next-generation mobile and 5G applications.
 
“Mobile, wireless, and 5G represent a significant opportunity for GLOBALFOUNDRIES, and our vital RF technology is featured in more than 85 percent of smartphones on the market today,” said Bami Bastani, senior vice president for mobile and wireless infrastructure at GF. “We are pleased to collaborate with GlobalWafers, and look forward to working with them to develop and qualify an additional supply of 300mm SOI wafers to integrate into our manufacturing processes and help meet the growing demand for our RF SOI solutions.”
 
“Given our market position, it is in our best interest – and the best interest of our clients – to build out and diversify the supply chain for 300mm SOI wafers,” said Tom Weber, senior vice president and chief procurement officer at GF. “GlobalWafers is the right partner for us to make this happen.”
 
“We are pleased with this opportunity to extend the long-standing partnership between GlobalFoundries and GWC, in light of the market evolution toward next-generation RF applications,” said Doris Hsu, Chairman and CEO of GWC. “Ultimately, this collaboration will lead to even greater success for both companies.”
 
About GlobalWafers Co., Ltd.
 
GlobalWafers, headquartered in Hsinchu, Taiwan, is one of the three largest silicon wafer manufacturers in the world. Founded in 1981, it was the semiconductor business unit of SAS (Sino-American Silicon Products Inc.) and spun off as GlobalWafers Co., Ltd. in 2011. Specializing in silicon wafer manufacturing, its product applications extend through power management, automotive, IoT, memory, sensors and MEMS. GlobalWafers operates out of 15 facilities in Taiwan, Japan, USA, Korea, Italy, Denmark, Malaysia, and China and is listed on the Taipei Stock Exchange. For more information about GlobalWafers, please visit https://www.sas-globalwafers.com.
 
About GLOBALFOUNDRIES
 
GLOBALFOUNDRIES (GF) is the world’s leading specialty foundry. GF delivers differentiated feature-rich solutions that enable its clients to develop innovative products for high-growth market segments. GF provides a broad range of platforms and features with a unique mix of design, development and fabrication services. With an at-scale manufacturing footprint spanning the U.S., Europe and Asia, GF has the flexibility and agility to meet the dynamic needs of clients across the globe. GF is owned by Mubadala Investment Company. For more information, visit www.globalfoundries.com.
 
Contacts:
 
Michael Mullaney
GLOBALFOUNDRIES
(518) 305-1597
[email protected]
 
William Chen
GlobalWafers Co., Ltd.
+886-3-577-2255 EXT: 2280
[email protected]

MRAM Continues March to Mainstream

For IoT and Automotive Applications, Embedded MRAM Promises Cost-Effective and Low-Power Solution 

By David Lammers

One reason the International Electron Devices Meeting (IEDM) is an important event is to see how the semiconductor industry is converging on a technology option, be it hafnium-oxide gate oxides, immersion lithography, or, in this case, magnetic random-access memory (MRAM).

At the 2019 IEDM, held in December in San Francisco, the major foundries and Intel all presented MRAM technologies that can be embedded in CMOS logic devices. While it is fair to say GLOBALFOUNDRIES has an edge on the others in terms of reliability and manufacturing experience, the other companies have clearly embraced MRAM as well.

MRAM’s day has come largely because embedded NOR flash requires too many masks—a dozen or more—to manufacture at the 28nm node and beyond. Embedded NOR flash also requires a high-voltage capability to write data, and the write time is quite long. MRAM has its challenges, as well, but it is faster and less power-hungry than eFlash.

Big Power Savings

“If your applications write a lot to NOR flash, then you are going to love MRAM,” said Jim Handy, the veteran memory analyst at Objective Analysis, based in Los Gatos, California. “Flash consumes a lot of power, a phenomenal amount, because it takes so long to write and requires high voltages. If you move to MRAM, there is big power savings. The write power drops by a couple of orders of magnitude, while the read power of MRAM is about the same.” 

Handy makes the point that companies developing microcontrollers have a choice: they can either load up on SRAM for working memory and put the code storage on an external (discrete) NOR flash; or they can make the jump to embedded MRAM (eMRAM). Since SRAM requires six transistors to store a bit, MRAM typically has about double—or better—the density improvement, he said. 

Additionally, in systems where the SRAM requires battery backup, non-volatile MRAM is often more cost effective than the combined chip-plus-battery cost of embedded static RAM (SRAM), he said.

At the 2019 IEDM, an entire session was devoted to eMRAM. After presenting GF’s latest eMRAM reliability data, Vinayak Bharat Naik, the Singapore-based technical lead for GF’s embedded MRAM effort, said he welcomed having four companies—GF, followed by Intel, Samsung, and TSMC—pushing eMRAM at same time.

“For the customers, if they want to move to a new technology from a conventional technology that they have been using for a long time, it cannot be sudden,” Naik said. “Once an end customer starts up on MRAM, they will grow more confident in the idea of replacing conventional memory with MRAM.”

eMRAM Reliability and Manufacturability 

Over the past year, several clients have asked GF to share additional data showing its eMRAM technology could meet all reliability tests for production, as well as withstand strong external magnetic fields that might disturb stored data. 

GF’s 2019 IEDM presentation focused on providing an answer to these questions, and it was a positive story to tell. 

Naik’s IEDM paper showed the manufacturability of eMRAM on GF’s 22nm FD-SOI embedded platform using advanced magnetic tunnel junction (MTJ) stack/etch/integration processes by achieving a fully functional 40Mb macro at industrial operating temperature range, -40 to 125 degrees Celsius. It also showed the capability of meeting solder reflow requirements as well as robust product reliability with failure a rate of less than one part per million (ppm) at package level.

The magnetic immunity study showed the 40Mb eMRAM macro has the capability to withstand an extremely high magnetic field of 1,600 Oersteds in stand-by mode at 25 degrees Celsius, with failure rate less than 1 ppm for 20 min exposure. At 125 degrees Celsius, the failure rate was still less than one ppm at 700 Oe. Active-mode magnetic immunity—the capability of a chip to operate in the presence of a magnetic field—of 500 Oe was also demonstrated. Endurance remained excellent with failure rates less than 1 ppm up to one million cycles, with no degradation in resistance distributions after one million cycles, and no degradation during high-temperature operation at 500 hours. All of the results were with error correction (ECC) in off-mode.

“A magnetic field can be anywhere,” Naik said. “In the home, the charger for your phone, for example, can create a certain level of magnetic field. We need to make sure that both standby immunity and active-mode immunity are good so that the chip can operate as usual,” Naik said.

In 2018, at the major technology conferences including IEDM and the Symposium on VLSI Technology, GF demonstrated its eMRAM could withstand the solder reflow steps used in chip packaging, which would allow microcontrollers (MCUs) to be programmed prior to the package solder reflow steps. The JEDEC standard of five times solder reflow at 260 degrees Celsius for five minutes has been proven with package-level tests.

Improved Reliability Performance

At the 2019 IEDM, by showing eMRAM package level reliability data from all standard reliability tests and magnetic immunity, GF remains competitive in eMRAM technology, Naik said.

“At this IEDM, we showed that we are production-ready for industrial-grade applications, including wearables, internet of things (IoT), and many others,” he said. “GF has good production experience with 40nm and 28nm MRAMs, experience that carries over to the eMRAM market.”

GF engineers have continued to optimize the magnetic tunnel junction (MTJ) cell, including deposition and etch. “Over the past year, we improved both the MTJ stack and etch as well as integration processes to improve the endurance performance with better switching efficiency. And our yields were boosted to above the 90 percent level,” Naik said.

Saving on Energy Consumption

Tom Coughlin, a memory and storage consultant who served as general chairman of the annual Flash Memory Summit for 10 years, said eMRAM “has a lot of possibilities for embedded products at the edge or end points, especially those that are power-sensitive.”

The market for emerging memories, such as eMRAM, is positioned to take off, Coughlin said. “There is big growth in persistent networks, including Factory 4.0, which combine intelligent devices with AI for more-efficient factories. In addition, agriculture could be a big market, with more farmers placing productive wireless smart sensors in their fields. Also with health care there is a need for more efficient energy usage. Many markets will drive demand. And then there are things we haven’t even thought of yet, including many consumer applications, new uses for a fast energy-efficient memory are just starting to come on-line, but we haven’t recognized their potential yet.”

Naik said GF is taking it step-by-step, focusing first on IoT and industrial use, then automotive-grade eMRAM—where the temperature challenges are higher and where the data demands of autonomous driving require high-density on-chip memory—and then using MRAM as a level 4 cache, replacing some SRAM on processors.

And then there is another very large market, process in memory (PIM) computation, which was discussed often at the 2019 IEDM. PIM involves using some form of emerging memory in artificial intelligence (AI) computing. MRAM or other memory types, such as resistive RAM or phase-change RAM, could serve as the local processing element in edge devices. “Considering the superior performances of MRAM such as fast write speed, high endurance, high density, and low power, MRAM is unique among other NVMs and has a great potential for PIM computation for AI applications,” Naik said.

Process in Memory

Coughlin agreed about the potential of PIM. “Process-in-memory may be a bigger part of everything, putting AI applications in everything else,” he said. “We could do the training elsewhere, and have some learning capability on the device. At the very least, process-in-memory could run a model locally instead of at the data center.”

MRAM could also play a bigger role in data centers. “If the system is not using something, MRAM preserves the state, and when that data is needed it comes right back up. That takes us away from dependence on volatile memory toward a greater utilization of non-volatile memory. A lot of that today is driven by energy-sensitive applications, at edge points, but it could be used also in data centers,” Coughlin said.

Karim Arabi, CEO of San Diego-based Atlazo Inc., spoke at IEDM about change coming to edge devices. Autonomous driving is just one form of edge computing that will require “tons of data,” he said.

Advanced driver-assistance systems (ADAS) requires “low latency computing that is near the sensor,” Arabi said.

“When it comes to data aggregation and training, we can’t beat the cloud for computing power and data size. But other applications require much better power efficiency, and edge computing is 100 to 1,000 times less costly in terms of power than transmitting power over wireless links to the cloud. And for privacy reasons, a lot of data needs to stay local,” Arabi said.

In typical von Neumann architectures, about 75-95 percent of power is consumed by moving data between the memory and the processor. “With new memory architectures such as MRAM and PC-RAM, we can replace some SRAM with MRAM, and also move data from off-chip DRAM to on-chip MRAM. Either MRAM or PC-RAM could create a new paradigm in computing,” Arabi said. “Over the next 10 years, as neuromorphic computing takes hold, MRAM and PC-RAM will become even more key.”

New Compute Architectures

GF is positioning itself as a leader in MRAM, and embracing its potential for empowering GF clients to develop differentiated, feature-rich products, as well as to drive new technologies as potential new compute architectures.

Ted Letavic, chief technology officer and vice president for computing and wireless infrastructure at GF, said “we now have a connected society, and if you can’t process the data that we have within the power envelope, if can’t do the data analytics, then you can’t monetize, or even implement, AI. We have to be able to do the analytics, and that is either compute at the edge or in the data center.”

Moving forward, privacy will drive data to edge devices, where MRAM could play a role. “We all have personal data posted everywhere, from the edge to the data center. We would like to move that to the edge, to secure your data and be more private.”

A second factor driving edge computing is bandwidth. While 5G delivers more data to the data centers, that approach becomes impractical as the volume of mobile data accelerates. “Even with the huge promise of 5G, or even 6G, every bit that you have to transmit to the data center to compute takes bandwidth. We would like to get to the point where we have efficient compute engines at the edge. Then we could send the metadata—the result only—transmitting the result, not the raw data.”

Letavic said several major research centers are engaged with GF to explore these new approaches to edge computing.

“It is so much more than a silicon solution. We have to really change the compute architecture. Instead of just talking about new transistors and ways to handle electrons and photons, we are talking about new architectures,” Letavic said in an interview at the 2019 IEDM.

MRAM could play a major role in what Letavic calls the coming “renaissance of computer design.”

“For the first time in 30 years, we have opened the toolkit and are looking at non-Von Neumann architectures, where the power benefits are tremendous. We could achieve a 100 or 1,000 times lower power with dedicated architectures.”

Because the process-in-memory approach is so power efficient, MRAM could play a central role in these non-Von Neumann architectures. “As device technologists, we could keep improving the technology for the next 30 years, and we are still not going to get to a power point that meets our aspirations,” Letavic said. “We have to change the architectures and software stacks. New architectures bring new device types, new features on platforms, and new approaches to the compute problem.”

MRAM继续向主流迈进

对于物联网和汽车应用,嵌入式MRAM有望提供经济高效的低功耗解决方案 

作者:David Lammers

国际电子器件大会(IEDM)是非常重要的行业盛会,原因之一在于,它能让我们了解半导体产业如何在技术选择方面趋向一致,这些技术可能是氧化铪栅极氧化层或浸没式光刻,也可能是本文所讨论的磁性随机存取存储器(MRAM)。

去年12月在旧金山举行的2019 IEDM大会上,各家大型晶圆厂以及英特尔都演示了可嵌入在CMOS逻辑器件中的MRAM技术。可以说,在可靠性和制造经验方面,格芯相对于其他公司具备一定的优势,但显然其他公司也在积极布局MRAM技术。

MRAM的时代已经到来,这在很大程度上是因为嵌入式NOR闪存(eFlash)在28nm甚至更小的节点上进行制造所需的掩膜过多(十几个甚至更多)。嵌入式NOR闪存还需要高电压能力来写入数据,而且写入时间非常长。虽然MRAM也面临着一些挑战,但与eFlash相比,它的速度更快,功耗更低。

显著节省能耗

位于加利福尼亚州洛思加图斯的Objective Analysis公司的资深存储器分析师Jim Handy表示:“如果您的应用要向NOR闪存写入大量数据,那么您将会更青睐MRAM。闪存的能耗非常高,因为它写入数据的时间太长,还需要高电压。如果迁移到MRAM,将会显著节省能耗。MRAM的写入能耗降低了几个数量级,而读取能耗大致保持不变。”

Handy指出,开发微控制器的公司可以选择:在SRAM上进行加载作为工作存储器,将代码存储在外部(分立式)NOR闪存上。或者,他们可以跳过这一步,直接迁移到嵌入式MRAM (eMRAM)。他表示,由于SRAM需要六个晶体管来存储一个位,MRAM通常可将密度提高一倍甚至更多。

另外,在SRAM需要电池备份的系统中,由于嵌入式静态RAM (SRAM)的成本包括了芯片和电池,与其相比,非易失性MRAM通常要经济高效得多。

在2019 IEDM大会上,有一整场专题讨论围绕eMRAM的话题展开。在展示格芯最新的eMRAM可靠性数据之后,常驻新加坡的格芯嵌入式MRAM技术主管Vinayak Bharat Naik表示,他非常欢迎四家公司同时推出eMRAM,这几家公司依次为格芯、英特尔、三星和台积电。

Naik表示:“对于客户而言,如果他们希望从已经使用了很长时间的传统技术迁移到一种新技术,这个过程不能太突然。一旦最终客户开始采用MRAM,他们将对使用MRAM取代传统存储器越来越有信心。”

eMRAM的可靠性和可制造性 

过去一年,有多家客户请求格芯分享更多数据,以此展示格芯公司的eMRAM技术能够满足生产的所有可靠性测试要求,还能耐受可能干扰存储数据的强外部磁场。 

格芯在2019 IEDM大会上的演示重点解答这些问题,收到了积极的反响。 

Naik的IEDM论文展示了eMRAM在格芯的22nm FD-SOI嵌入式平台上的可制造性,使用先进的磁隧道结(MTJ)堆叠/蚀刻/集成工艺,在工业级工作温度范围内(-40至125摄氏度)实现功能完全、单体密度为40Mb的模块。该论文还展示eMRAM能够满足回流焊要求,并且提供稳定的产品可靠性,在封装级别上的失效率低于一百万分之一(ppm)。

抗磁性研究表明,在25摄氏度的温度下,单体密度为40Mb的eMRAM模块能够在待机模式下耐受1,600奥斯特的极高磁场,在暴露20分钟的情况下,失效率低于1 ppm。在125摄氏度的温度下,当磁场强度为700奥斯特时,失效率仍然低于1 ppm。活动模式抗磁性 — 存在500奥斯特磁场的情况下,芯片仍然能够工作。它保持良好的耐久性,在长达一百万个周期内的失效率低于1 ppm,在一百万个周期之后,电阻分布不会退化,在高温下工作500小时期间,电阻分布也不会退化。所有结果都在关闭模式下进行了纠错(ECC)。

Naik说:“磁场可能无处不在。比如,在家里,您手机的充电器可能产生一定强度的磁场。我们必须确保在待机和活动模式下均具备良好的抗磁性,这样芯片才能够正常工作。”

2018年,在一些重要技术会议上(包括IEDM和有关VLSI技术的研讨会),格芯展示了其eMRAM能够耐受芯片封装中使用的回流焊步骤,这使得他们能够在封装回流焊步骤之前对微控制器(MCU)进行编程。260摄氏度下五次回流焊五分钟的JEDEC标准经过了封装级测试的验证。

提高可靠性

在2019 IEDM大会上,格芯展示了来自所有标准可靠性测试和抗磁性测试的eMRAM封装级可靠性数据,从而证明我们在eMRAM技术领域具备竞争力。

Naik表示:“在这次IEDM大会上,我们展示了我们的技术可以随时用于生产,适合各种工业级应用,包括可穿戴设备、物联网(IoT)及其他诸多应用。格芯在40nm和28nm MRAM产品方面具有丰富的生产经验,这种经验一直延伸到eMRAM市场。”

格芯工程师在不断优化磁隧道结(MTJ)单元,包括沉积和蚀刻。Naik表示:“过去一年中,我们在MTJ堆叠和蚀刻以及集成工艺方面都有所改进,以提升持久性,实现更高的开关效率。我们将产品良率提升到90%以上的水平。”

节省能耗

Tom Coughlin是一位存储器和存储技术咨询师,担任年度闪存峰会的主席长达10年,他表示eMRAM“为边缘或端点的嵌入式产品带来了诸多可能性,特别是那些对功耗敏感的产品。”

Coughlin认为,eMRAM等新兴技术的市场必将迎来一次腾飞。他说:“持久性网络的发展空间巨大,包括工厂4.0,它将智能设备与人工智能相结合,打造更高效的工厂。此外,农业也可能是一个庞大的市场,更多的农场主在农田中放置高效的无线智能传感器。对于医疗保健应用,则需要更高效地使用电能。很多市场都将推动这种需求。另外,还有一些我们尚未想到的用途,包括很多消费型应用,快速高能效存储器的新用途才刚刚起步,我们迄今还没有认识到它们的潜能。”

Naik表示,格芯正在稳步推进eMRAM的应用,首先专注于物联网和工业用途,然后是汽车级eMRAM — 在此类应用中,温度挑战更加严峻,自动驾驶的数据需求离不开高密度的片上存储器 — 然后才是使用MRAM作为四级缓存,取代处理器上的部分SRAM。

还有另一个非常庞大的市场,即计算存储一体化(PIM),我们在2019 IEDM大会上经常对这项技术展开讨论。PIM在人工智能(AI)计算中使用某种形式的新兴存储器。MRAM或其他存储器类型,例如阻性RAM或相变RAM,可以充当边缘设备中的本地处理元件。Naik表示:“考虑到MRAM具备诸多优良性能,例如快速写入、高耐久性、高密度和低功耗,MRAM相比于其他NVM拥有独特优势,在面向人工智能应用的PIM计算方面潜力巨大。”

计算存储一体化

Coughlin认同PIM技术具备的潜力。他说:“计算存储一体化可以在任何应用中发挥更大作用,而将人工智能应用放在其他位置运行。我们可以在其他地方进行数据训练,而将一些学习功能放在设备上。至少,计算存储一体化可以在本地运行模型,而不是在数据中心运行。”

MRAM还可在数据中心扮演更重要的角色。Coughlin表示:“如果系统没有运行任何负载,MRAM可以保持空闲状态,当需要数据时,它可以立即投入运行。这让我们能够摆脱对易失性存储器的依赖,而更好地利用非易失性存储器。MRAM目前在很大程度上是受到了网络边缘的能耗敏感型应用的驱动,但它也可在数据中心使用。”

总部位于圣地亚哥的Atlazo Inc.,的首席执行官Karim Arabi谈到了边缘设备即将发生的变化。他表示,自动驾驶只是需要海量数据的一种边缘计算而已。

先进的驾驶员辅助系统(ADAS)需要“靠近传感器的低延迟计算”。

Arabi表示:“在数据聚合和训练方面,由于计算功耗和数据大小的原因,云计算更具优势。但其他应用需要更高的功效,就功耗而言,边缘计算的成本比通过无线链路传输至云端的成本要低100至1,000倍。由于隐私性原因,很多数据必须保存在本地。”

在典型的冯诺依曼架构中,大约75%至95%的电能用于在存储器和处理器之间移动数据。Arabi说:“有了MRAM和PC-RAM等新型存储器架构,我们可以使用MRAM来取代一些SRAM,还可将数据从片外DRAM移动至片上MRAM。无论是MRAM还是PC-RAM,都能够创建一种新的计算范式。在未来十年内,随着神经形态计算日臻成熟,MRAM和PC-RAM将变得更加关键。”

新计算架构

格芯将自己定位为MRAM领域的领导者,致力于帮助客户开发功能丰富的差异化产品,以及推动潜在的新计算架构等新技术发展。

格芯计算和无线基础设施部首席技术官兼副总裁Ted Letavic表示:“当今社会已经实现互联,如果你不能处理功率包络范围的数据,不能进行数据分析,那么你就无法从中获利,甚至无法实现人工智能。我们必须拥有分析能力,也就是边缘或数据中心计算能力。”

展望未来,隐私性将促使我们将数据转移到边缘设备,MRAM可在其中扮演重要角色。“我们的个人数据可能在任何位置发布,从网络边缘到数据中心。我们希望将这些数据移动至边缘,以确保您的数据安全,更好地保护隐私性。”

推动边缘计算的第二个因素是带宽。虽然5G将更多数据传输到数据中心,但随着移动数据容量加速增长,这种方法变得不切实际。“即便5G甚至6G能够带来巨大的前景,但您要传输到数据中心进行计算的每一位数据都会占用带宽。我们要达到的目标是,在边缘拥有足够的计算引擎。然后我们可以发送元数据,仅传输结果,而不传输原始数据。”

Letavic表示,多家重要研究中心正与格芯开展合作,研究边缘计算的这些新方法。

“这远远超出了单纯的芯片解决方案。我们需要真正改变计算架构。在2019 IEDM大会上的一次采访中,Letavic表示:“我们并非只讨论新的晶体管,以及处理电子和光子的方式,我们讨论的是新的架构。”

Letavic将新架构称为即将到来的“计算机设计的文艺复兴”,MRAM能够在其中扮演重要角色。

“在30年时间内,我们第一次考虑采用非冯诺依曼架构,它将带来巨大的功耗优势。我们能够实现比专用架构低100倍甚至1,000倍的功耗。”

由于计算存储一体化方法具有很高的能效,因此MRAM能够在这些非冯诺依曼架构中扮演中心角色。Letavic表示:“作为器件技术人员,我们能够在未来30年内不断改进技术,我们目前仍然没有达到满足我们期望的功耗点。我们必须改变架构和软件堆栈。新的架构带来新的器件类型、平台上的新功能以及解决计算问题的新方法。”

CMC Offers Researchers Access to GLOBALFOUNDRIES Advanced Semiconductor Technologies

CMC Microsystems has signed an agreement with GLOBALFOUNDRIES® (GF®), the world’s leading specialty foundry, that will provide access to GF’s advanced and specialized FinFET, RF SOI, FDX, SiGe, and Silicon Photonics platforms for CMC researchers at more than 60 Canadian universities and colleges, in addition to academic and commercial users globally.

格芯®(GLOBALFOUNDRIES®)未来展望

在格芯®(GLOBALFOUNDRIES®)发展的前10年,我们取得了显著的进步,也经历了成长的阵痛,这在本系列第1部分已做阐述,第2部分则详细说明了公司战略的重大变革。本文是最后的第3部分,我们将看到格芯如何以全新的定位和目标实现转型,顺应半导体行业的根本性变革趋势,继续稳步发展。

撰文:Gary Dagastine

许多行业外人士将半导体称为“计算机芯片”。目前半导体不仅用于传统计算,而且逐渐大量涉足人类工作的几乎每个领域,以实现数据的充分利用,因此“计算机芯片”这一术语应该淘汰了。例如可穿戴健身设备、日益自动化的汽车和声控个人助理等。

这些快速增长的多样化应用都需要针对具体需求定制半导体解决方案。因此,如何通过经济高效的解决方案,将支持5G的射频(RF)和毫米波功能、低功耗、嵌入式非易失性存储器、高电压功能、硅光子技术、先进封装等特性融于一体至关重要。

格芯®(GLOBALFOUNDRIES®)刚刚走入第二个十年,现在拥有15个基于节点的技术平台,14个独特或一流的应用功能集,以及知识产权(IP)生态系统中的数千个产权,就上述专业应用需求而言,这些都是得天独厚的优势。格芯利用这些技术资产能够提供成千上万种不同的应用解决方案。格芯称之为“创新方程式”,全球没有任何一家特殊工艺半导体代工厂拥有类似的专业优势。

去年,格芯首席执行官Tom Caulfield提出了放弃极致微缩工艺的转型战略,进一步增强特色差异化产品的开发。此次转型将公司资源从7nm工艺开发转移到更全面、更集中的领域,将更多的创新技术融入现有的产品组合平台,使公司实现重新定位。通过这种方式,格芯能够帮助客户实现增值,而且无需引入成本高昂的制造工艺。

新市场带来新机遇

作为公司实施转型战略的一部分,格芯最近针对特定的高增长半导体市场创建了三个战略业务部门,即汽车、工业和多市场战略业务部(AIM)、移动和无线基础架构部(MWI)以及计算和有线基础架构部(CWI)。

物联网(IoT)、云计算、人工智能/机器学习(AI/ML)、5G通信以及汽车系统中使用更多电子产品等大趋势都在推动这些市场发展。

“由于目前这些终端市场飞速增长,我们相信随着越来越多的设备开始联网,这些领域将为我们提供更多的机会”,帮助领导创建这三个全新战略业务部门的首席技术官兼CWI副总裁Ted Letavic表示。“我们的专业应用解决方案推动了这些发展进程,并从中受益。”

格芯估计,在这些市场中,约有470亿美元的晶圆厂业务可以通过12nm或以上技术节点领域的解决方案来解决。其中,AIM业务占240亿美元,MWI和CWI分别占150亿美元和80亿美元。

AIM市场包含物联网等应用,物联网由我们环境中感知、存储和传输数据的联网设备组成。汽车应用也属于这一细分市场,支持先进的驾驶员辅助系统、汽车雷达、动力系统控制等各种功能。

在MWI市场,5G无线通信的出现是一个关键驱动因素。其低延迟率和极快的数据传输速度有望实现通用移动连接,大幅降低网络运营商的数据传输成本,并催生大量新应用。据估计,到2035年,通过5G网络连接的智能设备将会高达一万亿台。

与此同时,CWI领域的发展也受到云计算和人工智能/机器学习爆炸式增长的推动。

创新的格芯解决方案使新应用成为可能

这些市场创新和成功将不再受体积日益缩小的半导体驱动,而是由经过精心设计和优化以提供特定功能和性能的成熟半导体平台驱动。

格芯电子负责全球研发运营、射频和硅光子技术解决方案的副总裁John Pellerin表示:“在很大程度上,7纳米及以下的技术与这些市场机会无关,这是格芯放弃微缩工艺的一个关键原因。市场需要针对特定应用量身打造的其他类型的创新技术。我们称这些为特定领域解决方案,而这正是格芯的专长所在。”

物联网应用就是一个很好的例子。典型的物联网设备可能包括具有模拟接口的传感器、用于编码和数据存储的存储器、用于数据通信的射频功能、用于控制设备和处理数据的处理器,另外可能还有电池和电池接口。大多数情况下,这些设备可能处于休眠模式,所以超低漏电是一个关键要求。然而,一旦被信号唤醒,设备必须立即切换到高性能模式,以便在存储器中获取或存储数据,处理数据,然后传输或接收数据。

昂贵的7nm CMOS体硅逻辑芯片在处理这些不同功能方面没有任何实际优势。然而,基于格芯22FDX®FD-SOI平台的片上系统(SoC)却是理想的解决方案,它具有嵌入式MRAM内存和业界领先的射频功能。22FDX平台的本地性能和能效可以通过格芯的自适应体偏置功能进一步提高,使系统能够根据需要进行动态调整,以获得更高的性能或更高的功效。因此,格芯能够帮助客户更轻松、更经济高效地开发新型物联网设备,这些设备可以在静态时降低能耗,需要时提供高性能功能,并集成其他必要特性。

云计算和数据中心的人工智能推理/训练应用同样与节点微缩技术不太相关,而格芯的特定领域解决方案则是关键的推动因素。例如,数据中心的功耗是一个大问题:2007年其功耗约占美国总电力输出的3%,2020年预计将会增加到7%。显然,每一瓦电力都很重要。

在数据中心的人工智能功率预算中,最大一块来自内存和处理器之间的数据传输,这也是日益普遍使用内存计算等技术来降低功率和延迟的原因所在。格芯正在开发众多创新解决方案来解决这一问题。一种方案是通过增加极低电压(0.5V)和双功函数SRAM存储器等功能,来降低功耗需求,并提升格芯的12LP FinFET平台性能。另一种方案是在类似SRAM的工作模式下使用MRAM,旨在以低功耗下三倍密度存储器取代6T SRAM。

硅光子是在数据中心内实现低延迟数据传输和高能效的另一个关键因素。格芯的硅光子(SiPh)光通信芯片提供了显著增加带宽的方法,更容易传输大量数据,使性能达到新的水平。

格芯针对数据中心开发的另一项创新是2.5D封装技术。例如,格芯正与燧原科技(Enflame Technology)合作开发一款加速器,用于在数据中心内建立快速、节能的基于云的人工智能训练平台。该人工智能加速器基于格芯的12LP FinFET平台,并采用先进的2.5D技术与其他芯片共同封装,使得燧原能够获得原本使用更高微缩技术才能提供的相同性能,但成本更低,产品功能更灵活。

员工与合作伙伴是关键

没有员工的努力与合作伙伴的帮助,格芯就无法成为更贴近客户需求、更贴近半导体行业未来的企业。如果没有格芯数千名员工日复一日的辛勤付出和努力,为公司持续积累的专业技术知识经验,就没有如今格芯取得的成就。

此外,格芯还与外部专家网络建立了深入的合作伙伴关系,这些专家提供专业知识和工具,确保格芯客户能够快速、轻松、经济高效地将最初的创意变成经过封装和测试的成品。

格芯的技术支持副总裁Jim Blatchford表示:“简单来说,我们是真正意义上的协作式晶圆厂,通过客户相关支持部门,我们可以与任何客户合作,以最佳方式帮助他们实现目标。我之前在其他公司工作时,基本上是所有晶圆厂的客户,所以我很清楚客户的想法和感受。我们了解客户的需求,我们认为我们的职责是帮助所有人,包括确切知道自身需求的大型公司,以及需要获得我们指导的小型客户,帮助他们调整技术以满足特定的终端市场需求。”

因此,格芯现在拥有100多个生态系统合作伙伴,其业务范围涉及IP、EDA、设计/技术协同优化、组装和测试等服务。格芯的所有技术平台上拥有超过3,400项IP产权,涉及40多个IP合作伙伴,另外还有1,000个IP产权正在积极开发中。过去五年来,通过生态系统合作伙伴帮助客户实现了超过1,500项设计。

格芯还建立了两个合作伙伴生态系统,帮助客户充分利用关键的格芯解决方案。一个是FDXcelerator™生态系统,旨在促进实现22FDX SoC设计,并缩短上市时间。另一个是RFwave™合作伙伴计划,涵盖与格芯合作的各个公司,旨在帮助采用格芯公司各种射频技术平台的客户,通过简化设计,在更短的时间内开发差异化解决方案并推向市场。

展望

格芯的前10年发展历程略有波折,未来10年将会怎样,让我们拭目以待。面对现状展望未来,我们相信,格芯拥有可行的商业战略,洞悉目前的市场机遇,并提供创新的技术解决方案,确保客户成功,此外还有人力资本及外部合作伙伴,能够向客户提供所有的专业知识和工具。