GlobalFoundries Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology

Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications

Santa Clara, Calif., December 13, 2016 – GlobalFoundries today announced that it has demonstrated true long-reach 56Gbps SerDes performance in silicon on the company’s 14nm FinFET process. As a part of GF’s high-performance ASIC offering, FX-14™, the 56Gbps SerDes is designed for customers seeking to improve power and performance efficiency while handling the most demanding long-reach high-performance applications.

The FX-14 offering provides a broad range of High-Speed SerDes (HSS) solutions and is manufactured on the company’s mature, production-proven 14nm FinFET (14LPP) platform at its Fab 8 facility in Malta, N.Y. The best-in-class architecture for high-performance 56Gbps delivers industry-leading jitter performance and equalization support for enhanced system performance over a wide range of high-speed interface standards and will enable high-speed connectivity and low-power solutions for current and future leading-edge networking, compute and storage applications.

GF’s 56Gbps SerDes core supports both PAM4 and NRZ signaling, with the capability to equalize over 35dB of insertion loss, eliminating the need for expensive and power-hungry repeaters currently employed in the most challenging system environments. With a groundbreaking architecture, the 56Gbps SerDes achieves market-leading long-reach performance that will exceed emerging 50Gbps industry standards such as OIF CEI-56G-LR and IEEE 802.3cd.

“This milestone demonstrates our ability to design best-in-class ASIC solutions and deliver industry-leading performance at 56Gbps in the most demanding networking and datacenter applications at very competitive power and area,” said Mike Cadigan, senior vice president of global sales and business development at GF. “The long history of proven success in SerDes development and ASIC expertise, combined with GF’s 14LPP technology, enables our customers to bring new applications to market in a timely and cost-effective manner through integrated and high-performance cores.”

“The explosive growth in network bandwidth continues to drive the need for ASIC solutions with industry-leading interface speed and density,” said Bob Wheeler, principal analyst at The Linley Group. “GF has delivered a sophisticated SerDes core that enables a fast time to market for best-in-class ASIC solutions that will improve bandwidth capacity, scalability, and power efficiency in next-generation networking equipment.”

GF’s FX-14 design system extends the company’s HSS leadership with an ultra-high performance 56Gbps SerDes, PCI Express, and multiple 30Gbps SerDes designs, as well as support for various external memory interfaces. GF’s embedded memory solutions include the industry’s fastest and lowest power embedded TCAM, which offers up to 60 percent better performance and 80 percent less leakage than its predecessor, along with density and performance-optimized SRAMs.

Customers are presently designing advanced ASIC solutions in 14LPP process technology using the 56Gbps and other FX-14 SerDes cores. GF is currently demonstrating its 56Gbps SerDes in customer channels and will begin shipping development boards in early Q1 2017. For next-generation data communication networks, GF is developing an advanced electrical solution for ease of migration, as well as optical variants, enabling a broad array of technology to achieve 112Gbps and beyond.

About GF

GF is a leading full-service semiconductor foundry providing a unique combination of design, development, and fabrication services to some of the world’s most inspired technology companies. With a global manufacturing footprint spanning three continents, GF makes possible the technologies and systems that transform industries and give customers the power to shape their markets. GF is owned by Mubadala Development Company. For more information, visit https://www.gf.com.

Contacts:
Erica McGill
GF
(518) 305-5978
[email protected]

MRAM Meets Embedded

By Dave Lammers

Now that magneto-resistive random access memory (MRAM) has reached the point — after more than two decades of development — where it can be more widely used, the question becomes: How will designers use it? How will MRAM make a difference in the connected systems in mobile, automotive, and IoT? MRAM pioneer Everspin Technologies (Chandler, Ariz.) has been shipping discrete MRAMs made by GF, largely to the cache buffering market, for the past two years, said analyst Tom Coughlin. With speeds rivaling DRAMs, and basically unlimited data retention, Coughlin said MRAM “is the best candidate for replacing existing non-volatile memories in computer architectures.”

Computer Architecture graphic

Drone Graphic

Mobile devices and other systems often have large amounts of SRAM, Coughlin said, and must use time and energy to preserve the memory state when the power is turned off, or a system gets hung up. Because MRAM can be turned off and on with virtually no additional power consumption, system designers can do much more power cycling, turning power off to conserve battery life. There is no energy penalty when a normally-off system comes back to life. “For mobile devices, MRAM enables a lot more power-saving modes, which can help battery-powered systems,” Coughlin said. MRAM’s power-saving capabilities are somewhat surprising, because the early knock on MRAM was that it consumed a lot of power. Over the past 25 years the technology has gone from a thermally-assisted, sandwich-layer MRAM to a perpendicular magnetic tunnel junction, spin-transfer (pMTJ ST-MRAM) architecture. Back to the question: Where does MRAM fit? First, think about how fast the electronics industry is changing and where the opportunities are. New product categories such as augmented reality systems, assisted driving vehicles, drones, and a panoply of IoT technologies, are right in front of us. Dave Eggleston, the vice president of embedded memory at GLOBALFOUNDRIES, points out that most of these new systems depend on fast visual image processing. A car must process image data in real time to avoid a crash, requiring visual image processors and fast memories. “A drone is a great example of where you need lighter weight, and where more energy-efficient circuitry results in longer fly times. How does a drone navigate? By pulling in 3D maps. It has its own vision system, with stored information on topography, to hash real-time information,” Eggleston said. With MRAM, it is possible to trot out some impressive characteristics: 1000x more endurance and 1000x faster write speeds than eFlash; more dense and versatile than SRAM, and an ability to integrate into a CMOS logic process without disturbing the logic transistors. Also, embedded MRAM (eMRAM) is a low-mask-count technology, requiring only four additional mask layers compared with a dozen or more for eFlash at advanced nodes. Early on, Eggleston didn’t envision MRAM being immediately suitable to embedded applications. “I’m not sure I would have told you that ten years ago. But because the magnetic junctions are built in the back end of the line, and are easier to integrate in a logic process, the embedded applications make sense,” he said.

MRAM as Working Memory

To think of eMRAM as simply replacing something else probably is not the best way to think of it, especially in the advanced SoCs needed for emerging markets. It opens new possibilities in the working memories for mobile, IoT, automotive, and other connected applications, Eggleston said. For a complex chip with, say, four graphics processing units and a visual processing unit, an MRAM module could store the code and another block of eMRAM could store data. “By storing data in a non-volatile media, you don’t get rid of SRAM, because eMRAM does not run as fast, but you can shrink down the amount of SRAM and utilize eMRAM as an SRAM-like memory. That makes the design cost effective because eMRAM is denser than SRAM. You get more data for a smaller chip size,” Eggleston said. Software and SoC designers will learn new capabilities, taking advantage of the “persistence” (data retention) characteristics of eMRAM. The cost and performance benefits of eMRAM are what Eggleston calls the “table stakes” needed to make eMRAM a credible alternative to eFlash. But it will be the new capabilities brought by eMRAM that will entice system designers to ask ‘Now, how else can I use it in my chip architecture?’ Coughlin, who earlier worked in technology management at several disk drive companies, said MRAM “definitely has a niche replacing some DRAM and SRAM. It may replace NOR. What we are seeing is almost a Cambrian explosion in the memory field, where NAND flash will continue for mass storage while we see another tier of storage where MRAM or the Intel-Micron phase change memory is used in some applications.” As new applications call for higher performance, and as IoT systems generate much more data, systems designers will use multiple layers of memory. SRAM and DRAM will be complemented by new layers of phase change or resistive memories, and NAND, Coughlin said. “It will be a very interesting time, and we will see how it all shakes out. I do believe MRAM has a solid basis for being part of that menagerie,” he said.

22FDX® eMRAM

Eggleston said GF will continue to extend embedded flash, but GF’s plan is to marry eMRAM with another technology that has mask-count advantages: the 22FDX platform based on fully depleted SOI. The 22FDX-based products will begin to come to market in 2017, and Eggleston said eMRAM becomes available the following year. That timeline contrasts with a normal four or five years to bring NVM to a new logic technology. “For customers that need embedded memory, to bring eMRAM to 22FDX so soon after the (22FDX) logic launch is a huge win. With eMRAM, customers don’t need to recharacterize their designs, because the eMRAM is an extension of the platform, not a platform in and of itself,” he said. Since eMRAM does not shift the underlying transistors, designers can efficiently build a 22FDX-based SoC with the integrated eMRAM that runs on a logic voltage. “eMRAM is straightforward, it integrates incredibly well, and runs on a logic voltage,” he said.

Manufacturing Experience

Other companies have publicly referred to their own MRAM development programs. Coughlin noted that Everspin, which earlier took CMOS logic wafers and added its MRAM to the back end of the line, now works with GF as its full manufacturing partner. The 256-Mbit and, soon, 1 Gigabit-density discrete MRAMs sold by Everspin are made by GF. Coughlin estimates that about 60 million discrete MRAMs have been sold by Everspin thus far.

Source: Everspin, MRAM Leadership Over Three Generations

Source: Everspin, MRAM Leadership Over Three Generations

The years of manufacturing experience GF has gained by working with Everspin have provided key learning in deposition, etch, metrology, and other manufacturing processes that are unique to the multi-layer magnetic stacks within MRAMs. Coughlin said the manufacturing and technology partnership with Everspin has provided GF with a lead in the eMRAM arena. “I think it is a very important, pioneering effort. It has given the partners a lead in actual products, but they must be diligent to keep their lead,” Coughlin said. Eggleston said the spin-transfer MRAM work between GF and Everspin has provided “a lot of learning cycles” over the past two years of running wafers. “By the time we are in production with 22FDX eMRAM we will have been fabricating MRAM for four years. That definitely accelerates the time to market for our embedded solution,” he said.

QuickLogic公司加入格芯的FDXcelerator(TM)合作伙伴计划

SUNNYVALE, CA — (Marketwired) — 11/30/16 — QuickLogic Corporation (NASDAQQUIK), a developer of ultra-low power programmable sensor processing, display bridge and programmable logic solutions, today announced that it has joined GLOBALFOUNDRIES’ FDXcelerator™ Partner Program, a collaborative ecosystem that facilitates 22FDX® system-on-chip (SoC) design and reduces time-to-market for customers.

QuickLogic Joins GLOBALFOUNDRIES FDXcelerator(TM) Partner Program

SUNNYVALE, CA — (Marketwired) — 11/30/16— QuickLogic Corporation (NASDAQ: QUIK), a developer of ultra-low power programmable sensor processing, display bridge and programmable logic solutions, today announced that it has joined GLOBALFOUNDRIES’ FDXcelerator™ Partner Program, a collaborative ecosystem that facilitates 22FDX system-on-chip (SoC) design and reduces time-to-market for customers.

“QuickLogic’s partnership with GLOBALFOUNDRIES adds a unique dimension to the FDX program by offering customers ultra-low power embedded FPGA (eFPGA) Intellectual Property, complete software tools and a compiler,” said Brian Faith, president and CEO at QuickLogic Corporation. “This new capability provides users with a high level of design and product flexibility which will help lower costs and allow products to be easily customized to meet various and evolving market requirements.”

FX-14™ Methodology: A Formula for First-Time-Right Success

GLOBALFOUNDRIES’ VP of the ASIC product line shares how the team’s rigorous approach to design implementation and methodology were critical factors in achieving first-time silicon success for a major networking customer. Designing complex ASICs and delivering them on time is no easy task. It requires a powerful combination of design expertise, proven methodologies, and robust process technology. One year ago, with the launch of GF’ first ASIC platform, FX-14®, we gained competitive ground with a new pipeline of ASIC offerings on our 14nm FinFET process technology (14LPP). Since then, we have combined a rich legacy of ASIC expertise from our acquisition of IBM Microelectronics with manufacturing scale and improved access to IP and design tools to enable a new generation of customers to easily adapt their chip designs to the FX-14 offering.

ASIC product line chart

GF has decades of high-speed interconnect, memory, processor, and packaging innovation

Today, I am pleased to share an exciting milestone in our journey: We have achieved first-time-right silicon success for a lead product using our FX-14™ ASIC platform, with a major networking customer (to remain anonymous) bringing up a board in one week and declaring a fully functional ASIC chip. Such an aggressive schedule would be impressive for any product, but this is no ordinary chip—the highly complex design incorporated a high-performance ARM® 64-Bit core, a DDR memory subsystem including DDR memory controllers and PHYs, multiple high-speed backplane SerDes covering a broad range of interface standards, dense 1- and 2-port SRAMs, high-frequency I/Os, and PLLs. How did we accomplish this? A key factor in our approach is the use of an integrated test chip based methodology to rigorously vet our design implementation and methodology well in advance of customer product tapeout. Our ASIC design-for-test features include full scan, IEEE 1149.1 and 1149.6 JTAG boundary scans, and complex IP that meets the IEEE 1687 standard. Additionally, we use a three-phase netlist signoff process with stringent entrance and exit milestone requirements. This type of ASIC platform rigor before product tapeout is essential to enabling first-time customer success. Another key contributor was the maturity of the 14LPP manufacturing technology at our Fab 8 facility in upstate New York, which is in high-volume production on multiple products. By leveraging the FX-14 design platform, the team was able to turn around defect-free parts quickly in order to guarantee first-time-right silicon, while also achieving a power reduction of more than 50 percent over the customer’s previous design. Achieving first-time-right silicon success and fast board bringup for such a complex chip demonstrates the power of GF’ ASIC FX-14 design system. This, along with our proven expertise and design methodology, helps ensure that our customers can design with confidence and achieve a fast path to volume production. Today, we have many customer designs underway in FX-14 across a number of segments, including wired networking, wireless base station, compute, storage, and aerospace and defense applications. We are committed to partnering with these and other customers to help them bring their most complex designs to market.

Capability to support ~25 active chip designs at a time

Anokiwave公司利用格芯的高性能SiGe技术为下一代无线市场开发毫米波产品

San Diego CA, 14 November, 2016:  Anokiwave, Inc., an innovative company providing highly integrated IC solutions for mmWave markets and active antenna based solutions, today announced a collaboration with GLOBALFOUNDRIES to deliver the world’s most advanced Silicon Core IC solutions for the emerging mmWave active antenna markets.

Anokiwave Inc. Leverages GLOBALFOUNDRIES High-Performance SiGe Technologies to Develop Millimeter-Wave Technologies for Next-Generation Wireless Markets

San Diego CA, 14 November, 2016: Anokiwave, Inc., an innovative company providing highly integrated IC solutions for mmWave markets and active antenna based solutions, today announced a collaboration with GLOBALFOUNDRIES to deliver the world’s most advanced Silicon Core IC solutions for the emerging mmWave active antenna markets.

Active antennas have been used in military phase-array radar systems for many years and are now being deployed in record numbers in a wide range of commercial applications. The highly anticipated roll out of 5G infrastructure is expected to utilize active antenna technologies in both base stations as well as handsets.

Executive Perspective: The Beginning of a Virtuous Circle for GLOBALFOUNDRIES FDX™ Technology

By Alain Mutricy

In our highly competitive industry, it is imperative for a company to continually challenge itself to move forward, otherwise it will surely find itself falling behind. At GLOBALFOUNDRIES, this means we are thinking big and embarking on technological paths we have not taken before to provide differentiated value to our customers. Our fully depleted SOI technologies, which we call FDX™, are one example. You’ve heard a lot from us lately about FDX technology. Our 22nm and 12nm FDX processes are ideal for low-power, mobile and highly integrated SoC applications, the sweet spot in the market for many of our customers. We originally developed the 22FDX® technology for IoT systems, which we estimate to be a $50B market opportunity for semiconductors by 2020 (Source: McKinsey & Company,based on volume forecast by Gartner, iSuppli, Strategy Analytics). It delivers the performance of 14/16nm FinFET technology on demand leveraging a software-controlled back-bias technology—yet it also supports ultra-low power systems and an ultra-low-leakage library for battery-operated IoT solutions. The process technology has been designed to integrate high-performance digital libraries with high-performance analog and RF circuits. First IP and silicon implementations have demonstrated the fact that beyond IoT, the 22FDX platform is ideal for low-to mid-range smartphone single-chip integration. Also, with the 22FDX platform we have broken the old paradigm of semiconductor technology development, which went as follows: the most advanced node would be developed for high-performance digital logic implementation. Then, more or less two years later, analog and RF would complement the process toolkit, as leading-edge performance customers were already moving to the next digital node. Finally, add another two years and you may have the ability to integrate non-volatile-memory (NVM). Which means, of course, that systems which would benefit from NVM integration could only integrate logic IP with four-year old performance capabilities. The 22FDX platform enables our customers to break free of this constraint, and to design intelligent, fully integrated (e.g., lowest power and system cost), and connected (e.g. with RF systems on-chip) systems. We see customers working on 28nm today, but also 55nm and 40nm customers (with RF and/or NVM) considering switching directly to 22FDX to leverage this competitive advantage for themselves. We’re already working with scores of customers on FDX technology, and a good number are in the early prototyping phase. While our unique FDX technology is the foundation of our offerings, we have also challenged ourselves to find ways to help customers bring their FDX-based products to market as easily and as quickly as possible. In particular, to make available tools and IP that enable customers to leverage the software-controlled body-bias capabilities of our FDX technology. To do this, we have developed the FDXcelerator Partner Program. It is a collaborative effort that provides customers with the comprehensive support and resources they need to get FDX-based SoCs to market as fast as possible. Think of it as an entire ecosystem of pre-qualified, committed expert partners and suppliers who, along with GF, stand ready to provide whatever customers may need to create and bring to market innovative SoC solutions quickly and cost-effectively. Such strong, strategic partnerships are crucial for any business, large or small. For example, let me make a comparison with something on the personal side. More than 15 years ago, I started a business within Texas Instruments aimed at developing microprocessor solutions for cellular phones, with the early vision that cell phones would become “smart,” have high-level operating systems, the ability to download applications and share media, and larger screens. We called it the OMAP processor. (How this world has changed in these past 15 years!!!) Despite a strong technology advantage versus the competition, with much more performance for multimedia and graphic, at ultra-low-power, OMAP in the early days represented a new type of dual-core solution to program. Our customers were viewing a competitor’s leading microprocessor solution as a safer bet, easier to implement, although the technology could not provide the needed battery life that would make smartphones become a mainstream technology. We launched a similar ecosystem network called the OMAP Technology Center program, to break the design barriers for our customers by bringing the best-of-the-best technology partners with optimized software solutions and tools to OMAP technology. In no time, our partners adapted their resources, skills, tools and their multimedia software or base-port software solutions to support the OMAP platform and take advantage of the emergence of the smart phone market with OMAP, which became quickly the market leader. OMAP customers were all winning in their markets, as they could develop at an accelerated pace. OMAP Technology Centers—our partners—grew very fast and shared in the success. So, back to our topic here: While we estimate that 22FDX SoC design complexity and the level of effort required is much lower than that of FinFET technology, designing with the full leverage of the software-controlled body-bias is a new approach to SOC design. Not complex, but different. (FinFET design complexity is about twice that of 28nm, according to a Gartner study.) We couldn’t have done it so well nor so quickly without expert help, which is precisely the goal of our FDXcelerator Program here. So far, we’ve announced seven world-class program partners and there is a backlog of others who want to join. Each partner we’ve evaluated and selected has committed to offer our customers specific, dedicated resources, and the program now encompasses:

  • Tools (EDA) – Modules that leverage differentiated FD-SOI body-bias features, built into industry-leading design flows
  • Design elements (IP) – Complete libraries, including foundational IP, interfaces and complex IP to enable foundry customers to start designs quickly with validated IP elements
  • Platforms (ASIC)
  • Reference solutions – System-level expertise in emerging application areas to speed time-to-market
  • Packaging and test solutions (OSAT) – Enabling state-of the art SOC delivery
  • Other resources – Design consultation and other services dedicated to FDX technology

This all adds up to unique benefits and added-value that is only available with FDX technology from GF. I see the FDXcelerator Partner Program as a key toolbox for our customers to accelerate their time-to-market. It is the catalyst for a virtuous circle in the use of FDX technology, whereby the support we offer encourages more customers to migrate to FDX technology, and their ideas and participation in turn stimulate the ecosystem to grow further, which in turn draws in more customers, and so on. We are simultaneously creating the opportunity for business success for our partners and time-to-market advantage for our customers, by enabling them to have solutions and resources at hand to increase their design productivity on FDX technology. It’s exciting to be at the beginning of such a transformative effort. I’m proud to be a valued partner with our customers, and I can’t wait to see them win in the marketplace with our technology! Excluding “classic internet devices” such as laptops and smartphones. Also excludes automotive applications. Rough preliminary estimate with indicative split by device type. Integration of simple devices with communication features and memory in SoCs assumed and accounted for in communications category, embedded memory under logic.

New Generation of Server Chips is Shaking Up the Data Center Landscape

By Sanjay Charagulla

Cloud computing and high-performance computing (HPC) are changing the data center industry in a big way. The biggest drivers in this space are consumerization and big data, putting our trajectory on steroids. Global cloud IP traffic will more than quadruple over the next 5 years, growing at a CAGR of 33 percent from 2014 to 2019, and accounting for more than 80 percent of total data center traffic. Also, more than 86 percent of workloads will be processed by cloud data centers. As the rapid pace of change continues, server computing and data storage requirements will continue to grow at a significant rate across the data centers, resulting in data center OEMs deploying more and more servers and storage.

Global IP Traffic by Local Access Technology Graph

Source: Cisco VNI Global Cloud Index, 2016

 

It was only a few years ago when companies were debating if they were ready for the cloud. Today, it’s no longer a question of if – it’s about how much they can get out of the cloud services. Server processor shipments are estimated to grow by an average rate of nearly 25 percent CAGR for the next four years, reaching a total of about 25 million processors. For example, out of 11+ million servers shipped last year, x86 chipsets were used in 9.8 million of them. In the second quarter of 2016, Intel accounted for 99.7 percent of x86 server-chip shipments. The cloud is also forcing changes to long established players in the hardware and software worlds. Recently, IBM unveiled new details of its Power9 chip —the next addition to the line of microprocessors the company plans to use in its own servers—and AMD announced its new Zen technology for server chips. Here is IBM’s official Power processor roadmap from last year, and see how AMD’s Zen microarchitecture is different from its other server cores. As data server companies seek to increase power and performance while reducing costs, chipmakers are up to the challenge to find ways to increase speed and functionality to devices while keeping costs low. For example, because of its competitive power and performance, with a ~10 percent lower die size, GLOBALFOUNDRIES’ advanced 14nm FinFET technology (14LPP), supports a wide range of products from mobile devices to servers, such as AMD and IBM’s server chip products. Enabled chip x86 processor performance by 3GHz+, the GF’s 14nm FinFET technology taps the benefits of three-dimensional, fully-depleted FinFET transistors, and offers impressive gains over 28nm bulk CMOS with up to 50 percent increase in performance and a 65 percent reduction in total power.

GlobalFoundries Enabling Server Architectures

Source: GF Technology Conference 2016

Image of Server Rack

The IBM and AMD announcements along with GF competitive advanced node technology, represent new competition to Intel’s dominance in the server market. In a recent strategy shift, IBM’s Power9 architecture will be offered to other hardware companies. Subsequently, IBM Power9 processors are not only targeting to HPC and enterprise server markets, but also enabling solutions for big data analytics, artificial intelligence, cognitive and hyper-cloud computing platforms. At a Silicon Valley technical conference this summer, AMD rolled out a demonstration of the performance with a head-to-head comparison of its Zen Core, claiming a 5x improvement in cache bandwidth with the redesigned memory subsystem. Overall, it is a core that contributes a 75 percent higher capacity to schedule instructions and a 50 percent greater ability to execute and issue them. With the advent of cloud computing, large service providers such as Google, Facebook, and Amazon are opting for systems based processors and open-source or in-house applications. Earlier this year, Google announced that they are working with Rackspace to co-develop an open server architecture design specification based on IBM’s new Power9 CPUs. The partnership with Nvidia should also help IBM’s Power9 become popular in servers as well as in supercomputers. Along with these two server giants, many other ARM processor-based chip vendors and other startups are building ARM server chips to target cloud datacenter markets. ARM estimates that 13 companies already are using its technology in chips for servers and other data-center hardware, which are expected to compete predominantly in single-socket and dual-socket servers with Intel server chip products. Server companies and other ARM based chip vendors are aiming at Intel’s chip dominance, targeting the~$12B server market for scale-out data centers. Overall in the next few years, these processor technologies and new solutions could begin driving a 15–25 percent growth in the server chip market.

Aquantia宣布针对超大规模数据中心与云计算环境的突破性100G技术

2016年10月24日      格芯合作延展铜互联技术至100G带宽,降低高性能数据中心的网络连接成本

新闻提要

·       借助格芯在行业内最高性能的56Gbit/s SerDes,Aquantia最新的QuantumStream™技术为世界展现了第一个单线100Gbit/s直连方案。

·       QuantumStream™来自Aquantia专利验证的内互连接结构性创新,提供超低延迟的性能,对下一代超大规模结构尤为重要。

·       Aquantia和格芯合作推出高达800Gbit/s的以太网直连线路连接。

·       合作包括将QuantumStream™的 IP授权于格芯使用,扩大产品生态系统,维持云计算的革命。

 

           加州圣何塞,2016年10月24日— Aquantia公司,数据中心和企业基建的高速以太连接方案先锋领头羊,今天揭开了QuantumStream™ 的面纱。QuantumStream™ 是一项高性能连接结构的全新技术, 对下一代超大规模数据中心拥有革命性的潜力。QuantumStream™ 由Aquantia通过与格芯的战略性合作得到开发,发明了100Gbit/s带宽全电气化技术,为网络应用提供了超低延迟。Aquantia的技术提供了带宽和性能上的能级跳跃,使用单铜线完成了原本被认为只可通过光学传导达到的目标。本技术的公开将推动系统商和数据中心运营商向更高性能和超大规模结构的新技术靠近,同时仍维持电气基础内连接的可靠性、低成本和易用性。QuantumStream™ 目标达到服务器内部和服务器之间高达3米的连接性,很好的补充了超大规模数据中心长距离光学传播解决方案。

          “作为一名LinkedIn全球基建结构和策略部的首席工程师,我专注于设计下一代的数据中心。我一直相信100G连接会被广泛利用,只要它达到每十亿字节每秒1美元的价格点,”Yuval Bachar说道。“Aquantia拥有了创新的100G技术,铜连接提供更低的数据成本。低成本将改变服务器连接的生态,对于所有追求每Gbit/s成本小于一美元却拥有更高连接速度的人来说,都具有明显吸引力。”

          “至今,行业观察者表示只有光学连接能满足100Gbit/s和更高的需求。但是光学技术本身的高成本就是一道巨大到障碍,”Aquantia的CEO Faraj Aalaei说道,“我们在复杂高速铜收发器上的专业经验,结合格芯稳固的SerDes领先技术及其14纳米FinFET技术,将在产品会规划上完成100G连接的目标,提供给客户对具独特性的最佳的组合,并能够领先于市场的需求。”

 

策略合作致使100Gbit/s内联技术突破。

          格芯拥有超过20年的深度高速串联解串器(SerDes)设计专业经验。一块SerDes集成电路是交换器、服务器、路由器、数据中心的储存设备、IT环境之间数据传输的基础,同时也能控制多个渠道(例如光纤、电子铜缆线和背板)。格芯的FX-14™专用定制集成电路平台在14纳米超低功率(LPP)制程技术上设计,提供包括了以56Gbit/s速度传输数据的最新一代SerDes的优化后IP组合。

          在合作下,格芯向Aquantia的专家组提供了通向56Gbit/s IP核心的渠道。Aquantia结合了56Gbit/s IP核心和其混合模式信号处理(MMSP)和多核信号处理(MCSP)专利铜内联结构创新。铜内联结构在过去的十年内得到发展,并提供独特的100G内联高性能SerDes方案。此外,Aquantia将向格芯提供通向QuantumStream™ IP的渠道,共同打造客户的ASIC,并扩大支持革命性方案的设计生态环境。

          双方合作致力于打破目前的电路连接100Gbit/s带宽的固有技术障碍。另外,Aquantia的 QuantumStream™ 技术利用传统DAC缆线可轻易提供数百亿字节每秒的带宽,解决了目前面向互联网与数据中心产业最大挑战之一。

QuantumStream™是短距离的理想选择

·       100G,3米直连电缆SFP

·       400G,3米直连电缆QSFP

·       800G,3米直连电缆OSFP

 

            关于超大规模数据中心的一项关于交换器和服务器连接性的分析显示,大量数据都集中在几米距离之内。据Crehan研究公司称,绝大多数直连服务器和储存以太网连接在超大规模数据中心内都处于3米以内。由于百米甚至公里外的数据连接方案无法满足近距离连接,所以需要一个既满足远距离连接又实现近距离应用连接的互补解决方案。传统上,电子内联在近距离空间提供了最低成本与最低功耗的选择,而光学方案得利于低损耗的光纤,则一般用于长距离的应用。

           对于追求更高密度交换器与服务器配置的行业趋势,很多100G的光学传输方案被提出以作为应对的方案。Aquantia的 QuantumStream™技术作为大型服务器和交换器短距离传输的100G互补型解决方案,首次在铜导线应用上成为现实。

           “为满足数据和带宽需求的大量增长,格芯延续对网络和技术改进的投入,带来了同类级别最佳的高速SerDes方案,为客户带来巨大的利益”,格芯全球销售与业务发展部高级副总裁Mike Cadigan说道。“Aquantia铜内联技术上的创新设计和专业经验,结合我们世界级的FX-14 ASIC平台和SerDes IP组合,将维持电气连接在超大规模数据中心标志性地位。”

 

关于Aquantia

           Aquantia是高速半导体连接方案的领先开发者和全球供应商。得益于长达10年以上的技术领先和执行,Aquantia的市场领先产品组合打造了世界上最新的计算、数据中心和企业基建应用。Aquantia基于提供高性能、低功耗、高密度和高品质硅方案的结构创新,提供了拓展的产品组合,并能够满足不断变化的市场需求。Aquantia总部坐落于加州硅谷,汇集富有冒险精神的领导和精通策略的投资者。

了解更多详情,请登录www.aquantia.com

QuantumStream™ 为Aquantia Corp注册商标。

关于格芯

           格芯是提供全方位服务的领先半导体晶圆制造商,为世界上最具创新意识的科技公司提供独特的设计,开发和制造服务。格芯的生产制造业务遍布全球三大洲。格芯使技术和系统转型成为可能,并且帮助客户拥有塑造市场的力量。  格芯是Mubadala Development Company旗下公司。欲了解更多信息,请访问公司官方网站 https://www.globalfoundries.com