GLOBALFOUNDRIES Files Patent Infringement Lawsuits Against TSMC In the U.S. and Germany

Injunctions seek to prevent unlawful importation of infringing Taiwanese semiconductors

Santa Clara, Calif. August 26, 2019 – GLOBALFOUNDRIES (GF), the world’s leading specialty foundry based in the United States, today filed multiple lawsuits in the U.S. and Germany alleging that semiconductor manufacturing technologies used by Taiwan Semiconductor Manufacturing Company Ltd. (TSMC) infringe 16 GF patents.  The lawsuits were filed today in the U.S. International Trade Commission (ITC), the U.S. Federal District Courts in the Districts of Delaware and the Western District of Texas, and the Regional Courts of Dusseldorf and Mannheim in Germany.

In filing the lawsuits, GF seeks orders that will prevent semiconductors produced with the infringing technology by Taiwan-based TSMC, the dominant semiconductor manufacturer, from being imported into the U.S. and Germany. These lawsuits require GF to name certain major customers of TSMC and downstream electronics companies, who, in most cases, are the actual importers of the products that incorporate the infringing TSMC technology. GF also seeks significant damages from TSMC based on TSMC’s unlawful use of GF’s proprietary technology in its tens of billions of dollars of sales.

“While semiconductor manufacturing has continued to shift to Asia, GF has bucked the trend by investing heavily in the American and European semiconductor industries, spending more than $15 billion dollars in the last decade in the U.S. and more than $6 billion in Europe’s largest semiconductor manufacturing fabrication facility. These lawsuits are aimed at protecting those investments and the US and European-based innovation that powers them,” said Gregg Bartlett, senior vice president, engineering and technology at GF. “For years, while we have been devoting billions of dollars to domestic research and development, TSMC has been unlawfully reaping the benefits of our investments. This action is critical to halt Taiwan Semiconductor’s unlawful use of our vital assets and to safeguard the American and European manufacturing base.”

GF is filing these lawsuits to protect its investments, assets and intellectual property, which will help to ensure that semiconductor manufacturing remains a competitive industry for the benefit of its clients.

Media Fact Sheet

About GLOBALFOUNDRIES

GLOBALFOUNDRIES (GF) is the world’s leading specialty foundry. We deliver differentiated feature-rich solutions that enable our clients to develop innovative products for high-growth market segments. GF provides a broad range of platforms and features with a unique mix of design, development and fabrication services. With an at-scale manufacturing footprint spanning the U.S., Europe and Asia, GF has the flexibility and agility to meet the dynamic needs of clients across the globe. GF is owned by Mubadala Investment Company. For more information, visit globalfoundries.com.

Contact:

Laurie Kelly, GLOBALFOUNDRIES
(518) 265-4580
[email protected]

 

AI at the Edge Optimizes 5G mmWave Networks

By: Peter A. Rabbeni

AI touches our lives in many different ways, and while some AI-enabled applications are highly visible, like the increasingly popular Amazon Echo and Google Home voice-controlled intelligent digital assistants, others are less obvious. But by no means are they less important.

For example, AI techniques are essential to the successful rollout of 5G wireless communications. 5G is the developing standard for ultra-fast, ultra-high-bandwidth, low-latency wireless communications systems and networks whose capabilities and performance will leapfrog that of existing technologies.

5G-level performance isn’t a luxury; it’s a capability the world critically needs because of the exploding deployment of wirelessly connected devices. A crushing amount of data is poised to overwhelm existing systems, and the amount of data that must be accessed, transmitted, stored and processed is growing fast.

5G Needed for the Upcoming Data Explosion

Every minute, by some estimates, users around the world send 18 million text messages and 187 million emails, watch 4.3 million YouTube videos and make 3.7 million Google search queries. In manufacturing, analysts predict the number of connected devices will double between 2017 and 2020. Overall, by 2021 internet traffic will amount to 3.3 zettabytes per year, with Wi-Fi and mobile devices accounting for 63% of that traffic (a zettabyte is 12 orders of magnitude larger than a gigabyte, or 1021 bytes).

The new 5G networks are needed to handle all of this data. The new networks will roll out in phases, with initial implementations leveraging the existing 4G LTE and unlicensed access infrastructure already in place. However, while these initial Phase 1 systems will support sub-6GHz applications and peak data rates >10GBps, things really begin to get interesting in Phase 2.

In Phase 2, millimeter-wave (mmWave) systems will be deployed enabling applications requiring ultra-low latency, high security, and very high cell edge data rates. (The “edge” refers to the point where a device connects to a network. If a device can do more data processing and storage at the edge – that is, without having to send data back and forth across a network to the cloud or to a data center – then it can respond more quickly and space on the network will be freed up.)

AI and 5G are Perfect Partners

AI functionality is key to edge computing because it provides for more effective control of networks, cells and devices. Without it, many 5G applications that rely on edge computing simply couldn’t be implemented, wouldn’t work well, or would cost too much to deploy.

Take the case of adaptive beamforming, where signals from phased array antennas are combined in ways that increase signal strength in a given direction. It’s important for 5G applications because while spectrum availability in the mmWave frequency range (30GHz – 300GHz) is nearly infinite, signals in these wavelengths are attenuated by atmospheric absorption which limits their usable range to about 300 meters. They also have difficulty penetrating buildings and foliage.

In the past, systems leveraging mmWave frequencies were built accepting these limitations, but that also limited their application. The control of adaptive beam-forming antenna arrays used for mmWave 5G communications is critical to optimizing their operation and performance, and so with the advancement of semiconductors and faster digital signal processing, sensing systems combined with AI can be used to control them. This will lead to dynamically optimized base stations and computing resources which better accommodate changing user needs and environmental conditions. Without AI, this would be much harder to achieve.

Smart Surveillance Cameras

Another way in which AI conserves network resources is its role in the growing use of “smart” surveillance cameras, which make use of diverse semiconductor technologies. More than 120 million IP (internet protocol) cameras were connected to networks globally in 2016, for use in a wide range of applications.

Many of these are so-called “smart” surveillance cameras. (In one notable instance recently, smart surveillance technology enabled police to pick out a wanted man among a crowd of 60,000 concert-goers.)

Without AI to enable edge processing of most of the data generated by a smart camera, though, networks would be overloaded. A single high-definition IP smart camera generates a video stream of 10Mb of data (or 30 frames) per second. Multiply that by the millions of such cameras added in recent years, and the network bandwidth required just for this application would be over a petabyte per second (1015) ─ clearly impractical.

AI to the Rescue at the Edge

Moreover, processing this data in the cloud would be hugely expensive with current technologies. The only real answer is to compute at the edge, using AI techniques for object recognition, gesture detection and classification, and only send minimal metadata over the network.

One might think that the most advanced, leading-edge semiconductor technologies are required to do this, but in fact a number of processes come into play. GF offers the industry’s broadest set of technology solutions for a range of 5G and edge-connected applications, including mmWave front end modules (FEMs), standalone or integrated mmWave transceivers and baseband chips, and high-performance application processors for mobile and networking.

For example, GF’s RF SOI, SiGe and FDX™ FD-SOI offerings are designed to serve applications ranging from sub-6GHz to mmWave frequency bands. RF SOI and SiGe solutions deliver an optimal combination of performance, integration and power efficiency for FEMs with integrated switches, low noise amplifiers and power amplifier applications. FDX offerings are well-suited for the next generation of connected devices such as smart cameras which require ultra-low power technology with intelligence and wireless connectivity built in.

Clients can take advantage of the back gate body-biasing capability of FDX that can be used to dynamically increase performance when needed for image processing, AI/Machine learning, or controlling leakage when a system is in standby. The FDX ecosystem of IP partners includes optimized IP for on-chip  power management, radio sub-systems, low voltage SRAM, instant-on MRAM, eNVM and FPGA blocks for the highly integrated flexible systems-on-chips (SoCs) needed for AI-enabled edge computing.

FDX SoC for future commercial IP cameras. (Source: GF)

Connected Intelligence

Traditionally, the industry has viewed networks non-holistically, on a transactional basis and from the separate and distinct viewpoints of computation, storage and data transport.

But if we now think about adding many edge-connected devices with sensor collection capabilities to the network, we begin to see the value of creating networks with smart sensing capabilities, whose data can be collected and become the basis for intelligent and time-based decisions that improve and optimize the services provided by the network.

This is what we mean by Connected Intelligence – the ability to sense, decide and act upon information collected from devices/sensors connected to the network to create the ultimate user experience.

The addition of AI engines to augment this “sense, decide and act” approach to network optimization can create a very powerful framework to best leverage available network assets.

Underneath it all is the realization that AI-enabled 5G mmWave networks will depend on the advancements and innovation in semiconductor technologies. No single technology solution will serve all potential applications. It’s going to require a range of technologies to make these next-generation applications work together seamlessly and maximize their potential.

GF is working closely with clients to understand their needs in this space, and is leading the industry with our portfolio optimized to help meet the demands of AI at the edge.

About Author

 

Peter A. Rabbeni

Peter is Vice President of Segment Offering Management, Business Development and Marketing. He has more than 25 years’ experience in the wireless industry, in system/circuit engineering, sales, marketing and business development positions at both the OEM and silicon levels. He has held senior positions at Raytheon, Ericsson and IBM, and while at IBM he built a vertically integrated semiconductor portfolio strategy that led to more than $3 billion worth of silicon design wins worldwide. He is responsible for cultivating IBM’s RF foundry presence in Asia, turning it into one of the most successful design-win engines within IBM Microelectronics. He was a key player in helping to lead GF’s successful acquisition and integration of IBM’s RF foundry business.

 

边缘人工智能助力优化5G毫米波网络

作者:Peter A. Rabbeni

人工智能在日常生活中的应用十分广泛,只不过一些支持人工智能的应用比较引人注目,比如越来越受欢迎的Amazon Echo和Google Home语音控制智能数字助手,而另一些应用则不那么明显,但这绝不表示这些不明显的应用不重要。

例如,5G无线通信能否成功推出,在一定程度上取决于人工智能技术的发展。5G是一项正在制定中的标准,主要针对超快、超高带宽、低延迟的无线通信系统和网络,这些系统和网络的容量和性能都将远超现有技术。

5G级性能并非奢侈之物。随着无线互联设备部署数量的爆发式增长,它已成为全球范围内亟需实现的一种性能。海量数据将会超出现有系统的承载能力,而需要访问、传输、存储和处理的数据量也在快速增长。

即将到来的数据大爆炸亟需5G技术

据估计,全世界的用户每分钟会发送1,800万条短信和1.87亿封电子邮件,观看430万个YouTube视频,进行370万次Google搜索查询。有分析师预计,在2017年到2020年期间,制造业采用的互联设备的数量将会翻一番。总体而言,到2021年,互联网流量将达到每年3.3泽字节,Wi-Fi和移动设备的用量将占到总流量的63%(1泽字节比千兆字节高出12个数量级,也就是1021字节)。

而要想处理这类数据就离不开全新的5G网络。新的网络将分阶段推出,初期会利用4G LTE和无授权访问这类现有的基础设施。虽然初期第1阶段采用的这些系统可支持各类6GHz以下的应用,而且支持的峰值数据速率能超过10GBps,但真正的重点在于第2阶段。

第2阶段将会部署毫米波(mmWave)系统,为需要超低延迟、高安全性和极高蜂窝边缘数据速率的应用提供支持。(“边缘”指的是设备与网络相连接的点。如果一台设备能够在边缘位置处理和存储更多数据(也就是无需通过网络在云端或数据中心之间来回传输数据),那么其响应速度会更快,占用的网络空间也就更少。)

人工智能和5G堪称是完美组合

人工智能的功能是决定边缘计算性能的关键,因为它能提供更有效的网络、蜂窝和设备控制。如果没有人工智能的支持,许多依赖于边缘计算的5G应用将根本无法实现,或无法正常运作,抑或是需要花费极高的成本来进行部署。

例如,在自适应波束形成中,相控阵天线发出的信号会通过一定的方式组合在一起,以增加特定方向上的信号强度。这一特点对5G应用来说非常重要,因为虽然毫米波频率范围(30GHz–300GHz)内可使用的频谱几乎没有限制,但这些波长的信号会因大气吸收而衰减,导致其可用范围会限制在约300米以内。此外,这类信号也难以穿透建筑物和植物。

这些限制在过去构建采用毫米波频率的系统时就已存在,系统的应用范围因而也受到了影响。如何控制自适应波束形成天线阵列(用于进行毫米波5G通信)对于优化其操作和性能而言至关重要,因此,随着半导体技术的进步和数字信号处理速度的提高,可以利用具有人工智能功能的感应系统来进行控制。此举将有助于基站和计算资源实现动态优化,更好地满足不断变化的用户需求,适应各种环境条件。而如果没有人工智能,这将很难实现。

智能监控摄像头

如今,“智能”监控摄像头的使用日益广泛,它们基本采用了多种半导体技术,而人工智能在这类摄像头中的应用正是节省网络资源的另一种方式。2016年,全球范围内联网的IP(互联网协议)摄像头的数量已超过1.2亿,应用类型更是多种多样。

其中很多就是我们所说的“智能”监控摄像头。(就在最近,智能监控技术就帮助警察从6万名音乐会观众中找出了通缉犯。)

如果没有人工智能对智能摄像头生成的大部分数据进行边缘处理,那么网络就会出现过载。一个高清IP智能摄像头每秒会产生10Mb(或30帧)大小的视频流。如果再乘以近年来增加的数以百万计的摄像头,单单这一类应用每秒所需的网络带宽就会超过拍字节(1015),这显然是不切实际的。

人工智能利用边缘技术解决难题

此外,在当前的技术条件下,在云端中处理这些数据的成本非常高昂。唯一有效的解决方案就是在边缘进行计算,使用人工智能技术来识别对象、检测手势和进行分类,并只将最少量的元数据通过网络发送出去。

有人可能会认为,要做到这一点,就需要采用最先进、最前沿的半导体技术,但其实,目前市场上的多种产品和技术就已足够解决问题。格芯拥有业界最广泛的技术解决方案,适合各种5G和边缘连接应用,包括毫米波前端模块(FEM)、独立或集成毫米波收发器与基带芯片,以及用于移动和联网的高性能应用处理器。

例如,格芯RF SOI、SiGe和FDX™ FD-SOI产品就旨在为6GHz以下到毫米波频段的应用提供支持。RF SOI和SiGe解决方案为集成开关、低噪声放大器和功率放大器的FEM提供出色的性能、集成度与功效组合。FDX产品则非常适合下一代互联设备,如需要超低功耗技术、内置智能功能和无线连接的智能摄像头。

在系统处于待机状态,需要进行图像处理、人工智能/机器学习或控制漏电时,客户可以利用FDX的背栅极体偏置功能来动态地提高性能。IP合作伙伴的FDX生态系统包括:经过优化的IP(用于片上电源管理)、无线电子系统、低压SRAM、即时开启型MRAM、eNVM和FPGA块,以此打造支持人工智能的边缘计算所需的高度集成且灵活的片上系统(SoC)。

适用于未来商用IP摄像头的FDX SoC。(资料来源:格芯)

互联智能

一直以来,不管是在事务处理层面,还是在计算、存储和数据传输这些相互独立且明显不同的方面,业界都没有全面地看待网络。

但是,如果我们现在考虑向网络中添加许多具备传感器采集功能的边缘互联设备,我们将能了解到打造具备智能感应功能的网络究竟具有何种价值——可以采集数据、以这些数据为依据做出明智、及时的决策,进而改善和优化网络提供的服务。

这就是我们所说的互联智能,即能够感测到联网设备/传感器收集的信息,并以此为依据做出决策、采取行动,提供出色的用户体验。

通过增加人工智能引擎的数量,可以增强这种“感测、决策并采取行动”的网络优化方法的效力,进而形成功能强大的框架,以便更充分地利用可用的网络资产。

究其根本,能否实现支持人工智能的5G毫米波网络,关键在于半导体技术领域的进步和创新。没有哪一种技术解决方案能够服务于所有潜在的应用。要想让这些下一代应用无缝协作,同时充分发挥它们的潜力,我们需要采用一系列的技术。

格芯与客户紧密合作,努力了解他们的相关需求,并利用经过优化的产品组合引领行业发展,不断满足客户对边缘人工智能的需求。

关于作者

Peter A. Rabbeni

Peter目前担任产品管理、业务开发与营销部门副总裁。他拥有超过25年的无线行业从业经验,涉足OEM和芯片两大领域,从事过系统/电路工程、销售、营销和业务开发工作。他曾在雷神公司、爱立信和IBM担任高级职位。在IBM工作期间,他开发出了垂直整合型半导体产品组合战略,帮助公司在全球范围内实现了30多亿美元的芯片设计中标收入。当时,他还负责拓展IBM在亚洲地区的RF代工业务,最终将其打造成了IBM微电子部门最成功的设计中标业务来源之一。在推动格芯成功收购和整合IBM的RF代工业务方面,他发挥了关键的作用。

更多详情

GLOBALFOUNDRIES and Arm Demonstrate High-Density 3D Stack Test Chip for High Performance Compute Applications

Arm’s interconnect technology on GF’s 12LP process enables high performance and low latency, while increasing bandwidth for high core designs in AI, Cloud Computing and Mobile SoCs

Santa Clara, Calif. and Cambridge, UK, August 7, 2019 – GLOBALFOUNDRIES, the world’s leading specialty foundry, today announced that it has taped-out an Arm®-based 3D high-density test chip that will enable a new level of system performance and power efficiency for computing applications such as AI/ML and high-end consumer mobile and wireless solutions. The new chip was fabricated using GF’s 12nm Leading-Performance (12LP) FinFET process and features Arm’s mesh interconnect technology in 3D that allows data to take a more direct path to other cores, minimizing latency while increasing data transfer rates as demanded by data centers, edge computing and high-end consumer applications. 

The delivery of this chip demonstrates the fast progress that Arm and GF are making in researching and developing differentiated solutions that enable improvements in device density and performance for scalable high-performance computing. Moreover, the companies validated a 3D Design-for-Test (DFT) methodology, using GF’s hybrid wafer-to-wafer bonding that can enable up to 1 million 3D connections per mm2, extending the ability to scale 12nm designs long into the future.

“Arm’s interconnect technology in 3D enables the semiconductor industry to augment Moore’s Law to address a greater diversity of computing applications,” said Eric Hennenhoefer, vice president, Arm Research. “GF’s expertise in fabrication and advanced packaging capabilities, combined with Arm technology, gives our mutual partners additional differentiation to venture into new paradigms for next generation, high-performance computing.”

“In the era of big data and cognitive computing, advanced packaging is playing a much larger role than it has in the past. The use of AI and the need for power-efficient, high-throughput interconnect is driving the growth of accelerators through advanced packaging,” said John Pellerin, chief technologist, platforms at GF.   “We are delighted to be working with innovative partners such as Arm to deliver advanced packaging solutions which further enable integrating various node technologies optimized for logic scaling, memory bandwidth and RF performance in a small form factor. This work will allow us to uncover new insights in advanced packaging that will enable our mutual clients to create complete, differentiated solutions more efficiently.”

GF’s business model has transformed to enable its clients to develop new market and application-focused solutions specifically designed to meet the requirements of today’s demanding markets. GF’s 3D face-to-face (F2F) packaging solution not only provides designers a path to heterogeneous logic and logic/memory integration, but can be manufactured using an optimum production node that enables lower latency, higher bandwidth and smaller feature sizes. This approach, along with engaging early with partners such as Arm, gives clients maximum choice and flexibility, while delivering cost savings and faster time-to-volume for their next-generation products.

For more information, go to globalfoundries.com

About GLOBALFOUNDRIES

GLOBALFOUNDRIES (GF) is the world’s leading specialty foundry. We deliver differentiated feature-rich solutions that enable our clients to develop innovative products for high-growth market segments. GF provides a broad range of platforms and features with a unique mix of design, development and fabrication services. With an at-scale manufacturing footprint spanning the U.S., Europe and Asia, GF has the flexibility and agility to meet the dynamic needs of clients across the globe. GF is owned by Mubadala Investment Company. For more information, visit globalfoundries.com.

About Arm

Arm technology is at the heart of a computing and connectivity revolution that is transforming the way people live and businesses operate. Our advanced, energy-efficient processor designs have enabled intelligent computing in more than 145 billion chips and our technologies now securely power products from the sensor to the smartphone and the supercomputer. In combination with our IoT device, connectivity and data management platform, we are also enabling customers with powerful and actionable business insights that are generating new value from their connected devices and data. Together with 1,000+ technology partners we are at the forefront of designing, securing and managing all areas of compute from the chip to the cloud.

All information is provided “as is” and without warranty or representation. This document may be shared freely, attributed and unmodified. Arm is a registered trademark of Arm Limited (or its subsidiaries). All brands or product names are the property of their respective holders. © 1995-2019 Arm Group.

Contact:

Erica McGill
GLOBALFOUNDRIES
(518) 795-5240
[email protected]

Kristen Lisa
Arm 
(512) 939-9877
[email protected]

Pivot Strengthens IP Partnerships

By: Dave Lammers

When journalists think about how semiconductor companies compare, we often drill down into gate lengths, mask layers, SRAM cell sizes, and other hardware-oriented metrics. It was only midway through my own career that I started to realize that intellectual property (IP) and other forms of design support were just as important to the success of both foundries and integrated device manufacturers (IDMs).

When GF announced its “pivot” in late August 2018, much of the public attention again went to the role of the transistors, and how resources could be redeployed into other than 7nm logic. And yes, spreading those efforts out over the 18 different technologies (and sub-variants) offered by GF has received a fair amount of understanding in the era of a slowing Moore’s Law.

What needs a bit more emphasis is the renewed push on intellectual property (IP), in part made possible by the pivot.

Mark Ireland, vice president of ecosystem partnerships GLOBALFOUNDRIES, said the 12LP (FinFET) process is a good example of redeploying IP resources. In its initial phase, GF’s 12LP process was used primarily for CPUs, GPUs, and similar high-performance products. Now, 12LP is going into a broader set of markets, including consumer, networking, 5G wireless, and artificial intelligence-machine learning (AI-ML). These often require different IP, notably multi-protocol SERDES, low-power memories, and high-speed memory interfaces.

“In consumer, digital video and set top boxes are moving into FinFETs. Consumer did not lead that (12LP) node, but now it is moving into FinFETs. We are seeing a much broader set of markets and a broader set of customers, and that has to be reflected in the focus of our IP partnerships,” Ireland said.

Artificial intelligence SoCs also need additional IP, including high-speed SERDES and low-power memories, he said.

High-Speed SERDES for 5G Base Stations

Similarly, the 5G wireless standard “has broadened the need to bring in some high-speed SERDES IP that will be used in 5G base stations and elsewhere. That is the kind of IP that our customers need to be successful in these markets,” he said, noting that wireless customers can opt for the 22FDX fully-depleted silicon-on-insulator, 12LP FinFET, or other processes, depending on their application needs.

GF and Rambus announced 28-Gbps and 32-Gbps SERDES for the 22FDX process, and just prior to the Design Automation Conference, GF and Synopsys said they were readying a 25-Gbps SERDES on the 12LP process. “While it has broader market applications, this is the kind of IP that is very critical for 5G base stations,” Ireland said.

Also, GF and Analog Bits recently struck a deal to bring Analog Bits’ analog and mixed-signal IP design kits to the 12LP technology, including low-power phase-lock loop (PLLs) with spread spectrum clock generation (SSCG), process, voltage, and temperature (PVT) sensor IP, and others.

“We are developing deeper partnerships across a broader set of markets to meet the need for more IP. We are driving the process, and there is no lack of opportunity. The challenge in front of GF is to get the highest quality IP in place on time and on schedule,” Ireland said.

A Radio On Every Chip

Subi Kengeri, vice president of client solutions at GLOBALFOUNDRIES, said rather than rely on brute scaling, more IC design teams are pursuing complex designs with RF and mixed-signal either using FD-SOI or a traditional heterogenous integration approach. For complex RF and Analog SoCs, Kengeri said “the IP is the carrier of technology differentiation to the SoC. It is how designers extract the differentiated value of the technology. So it becomes important that the IP is fully optimized and has the highest quality.”

GF has a strong track record in RF technology, and keeping investments strong in RF IP is part of the post-pivot strategy. “Communication is becoming more important than ever, and every chip will have a radio in it. RF is very complex and the skill set is limited throughout the industry. We are no. 1 in the RF world, and by having invested in that IP, design services and RF reference blocks, we are well positioned to give our customers faster time-to-market and lower costs, with least risk. Think RF. Think GF.”

Tracking IP Readiness

John Kent, vice president of foundry IP and customer engineering, said a chip design may require 20 or more different IP titles. “We track IP readiness, and by that I mean when a customer wants to do a design, do we have all the IP necessary?” Kent said. That readiness metric is a “critical indicator that we are able to service a customer.” Another important metric, Kent said, is first-time-right, making sure all of the IP’s DC parametrics are accurate.

“Our on-the-ground experience with new customers tells us where we are world class, and where we have work to do. The biggest challenge we have as a team is balancing our resources as we redeploy off of seven nanometers, using some of the experience the team developed at 7nm on other platforms,” he said.

Kent said other GF technology platforms have received more attention, including an ongoing focus on improving the PDKs (product development kits). “Our PDK learning has been a work in progress over the last ten years as we have learned to execute in a timely fashion. With that process, and then the pivot, we were able to shift the primary PDK development focus from just FDX and FinFET to some of the other 18 families that GF provides its customers, redeploying much of our PDK resources across those technologies,” Kent said.

For the 22FDX foundational IP, GF has relied primarily – but not exclusively – on Invecas, which includes former members of the IBM memory IP team. Kent said of Invecas, “It’s a great team and produces great products.”

“Our base 22FDX foundation IP is from Invecas, and recently we have expanded our ecosystem to include automotive IP from Synopsys. It is our intention to work with multiple suppliers,” Ireland said. The deal with Synopsys includes foundation IP as well as analog and interface IP targeted to automotive applications such as ADAS, powertrain, 5G, and radar.

Foundation IP Can Be Complicated

Foundational IP, or FIP, can range from simple to moderate complexity. General purpose IO with multiple voltages can involve several different metal stacks and can be quite a complex design. “Typically when we release a library there are several thousand individual library cells composed within the FIP,” Kent said.

Memories, including Static RAMs, ROM, flash, and more recently MRAM, are included as FIP because, like I/O, they are foundational to a design. But memory IP is complicated, with sophisticated signaling problems and error correction.

So-called complex IP often has a significant amount of analog and mixed-signal content. A 32-Gbps SERDES can have many digital-mode functions, as well as complex mixed-signal to support signal and power parameters.

GF has been working with Everspin to develop new IP supporting the embedded MRAM for both the 22FDX and FinFET-based processes. Kent said MRAM has advantages over flash, including sub-nanosecond write times, (compared to milliseconds for flash), and very strong failure resistance. “We are developing new IP (to support MRAM), including classes of performance which mimic SRAM,” Kent said.

Automotive applications are a prime target for MRAM. “The automobile of the future will be covered with sensors, and everything has to run safely. MRAM is being contemplated because the ICs have to run longer in a car than, say, a computer is expected to last,” Kent said.

 

About Author

Dave Lammers

Dave Lammers

Dave Lammers is a contributing writer for Solid State Technology and a contributing blogger for GF’s Foundry Files. Dave started writing about the semiconductor industry while working at the Associated Press Tokyo bureau in the early 1980s, a time of rapid growth for the industry. He joined E.E. Times in 1985, covering Japan, Korea, and Taiwan for the next 14 years while based in Tokyo. In 1998 Dave, his wife Mieko, and their four children moved to Austin to set up a Texas bureau for E.E. Times. A graduate of the University of Notre Dame, Dave received a master’s in journalism at the University of Missouri School of Journalism.

 

GLOBALFOUNDRIES Adds Industry Veteran Glenda Dorchak to its Board of Directors to Support Next Phase of Transformative Growth

Move marks company’s first independent female board member, bringing decades of leadership in rapid-growth companies

Santa Clara, Calif., June 18, 2019 – GLOBALFOUNDRIES today announced the appointment of Glenda Dorchak as an independent director to the company’s board of directors, bringing the total of independent members to five directors.

“It is with great pleasure that I welcome Glenda to our board, as we strengthen GF’s position as the leading, global specialty foundry,” said Ahmed Yahia Al Idrissi, chairman of GF’s board of directors. “Glenda brings tremendous end user market experience, and we look forward to her contributions as we pivot to a more customer-centric and differentiated technology partner to the semi industry.”

“To build the future we envision for GF, we need experienced industry leaders with the foresight and vision to guide our long-term growth strategy,” said Tom Caulfield, CEO at GF. “Glenda is a strong addition to GF’s board, with her proven record of executive and board leadership in semiconductor hardware and software businesses. Her extensive technical know-how in connected products and technologies will help us further position the company as a clear industry leader in differentiated foundry solutions.”

Ms. Dorchak brings to the board more than 30 years of technology industry leadership experience from a broad set of management and executive roles starting at IBM Corporation, and including Intel Corporation, Intrinsyc Software and Spansion. She serves as an independent director for public technology companies ANSYS, Mellanox Technologies and Quantenna Communications and is an advisor to OMERS Private Equity.

For more information, go to globalfoundries.com.

About GLOBALFOUNDRIES

GLOBALFOUNDRIES (GF) is a leading full-service foundry delivering truly differentiated semiconductor technologies for a range of high-growth markets. GF provides a unique combination of design, development, and fabrication services, with a range of innovative IP and feature-rich offerings including FinFET, FDX™, RF, and analog/mixed signal. With a manufacturing footprint spanning three continents, GF has the flexibility and agility to meet the dynamic needs of clients across the globe. GF is owned by Mubadala Investment Company. For more information, visit globalfoundries.com.

Contact:

Erica McGill
GLOBALFOUNDRIES
(518) 795-5240
[email protected]

GLOBALFOUNDRIES and Soitec Announce Multiple Long-term SOI Wafer Supply Agreements to Meet Accelerating Demand in 5G, IoT and Data Center

Agreements secure high-volume 300mm wafer supply to support a broad range of customer applications across fast growing market segments

Santa Clara, Calif. and Bernin (Grenoble), France, June 6, 2019 – GLOBALFOUNDRIES (GF) and Soitec today announced that they have signed multiple long-term supply agreements for 300mm silicon-on-insulator (SOI) wafers to secure the high-volume supply to meet the growing demand from GF customers for its differentiated radio-frequency-silicon-on-insulator (RF-SOI), fully-depleted-silicon-on-insulator (FD-SOI) and silicon photonics technology platforms. The agreements, which take effect immediately, build on the existing close relationship between the companies to ensure state-of-the-art high-volume manufacturing for years to come.

Through industry leadership from both companies, RF-SOI solutions are used in 100 percent of smartphones manufactured today and FD-SOI has become the standard technology for cost-effective, low-power devices in high-volume consumer and IoT applications as well as for mission critical safety solutions in automotive proximity sensing. Silicon photonics technologies enable solutions to support the massive growth in communication infrastructure for data centers and next-generation 5G communication optical networks.

 “GF is delivering and investing in highly differentiated industry-leading technologies required for 5G, IoT, Data Center and Automotive applications,” said Bami Bastani, senior vice president of business units at GF. “These long-term agreements with Soitec, a valued partner, represent our commitment to ensure a secure supply of ultra-lower power, high-performance SOI solutions and supply that meet customers fast growing needs and unprecedented demand in these attractive markets.”

“GF is leading the industry in providing differentiated SOI solutions, creating more demand for Soitec’s engineered substrates,” said Paul Boudre, CEO of Soitec.”These agreements reflect the strength of our long-term partnership as we build the required capacity to meet this growing SOI demand.”

About Soitec

Soitec (Euronext, Tech 40 Paris) is a world leader in designing and manufacturing innovative semiconductor materials. The company uses its unique technologies and semiconductor expertise to serve the electronics markets. With more than 3,500 patents worldwide, Soitec’s strategy is based on disruptive innovation to answer its customers’ needs for high performance, energy efficiency and cost competitiveness. Soitec has manufacturing facilities, R&D centers and offices in Europe, the U.S. and Asia. Soitec and Smart Cut are registered trademarks of Soitec. For more information, please visit www.soitec.com and follow us on Twitter: @Soitec_EN

Soitec and Smart Cut are registered trademarks of Soitec.

About GLOBALFOUNDRIES

GLOBALFOUNDRIES (GF) is a leading full-service foundry delivering truly differentiated semiconductor technologies for a range of high-growth markets. GF provides a unique combination of design, development, and fabrication services, with a range of innovative IP and feature-rich offerings including FinFET, FDX™, RF and analog mixed signal. With a manufacturing footprint spanning three continents, GF has the flexibility and agility to meet the dynamic needs of clients across the globe. GF is owned by Mubadala Investment Company. For more information, visit www.globalfoundries.com.

Press Contacts:

Soitec: Erin Berard | +33 6 80 36 53 40 | [email protected]

GLOBALFOUNDRIES: Erica McGill | +1 (518) 795-5240 | [email protected]

#  #  #

Soitec is a French joint-stock corporation with a Board of Directors (Société Anonyme à Conseil d’administration) with a share capital of €62,762,070.50, having its registered office located at Parc Technologique des Fontaines – Chemin des Franques – 38190 Bernin (France), and registered with the Grenoble Trade and Companies Register under number 384 711 909.

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Broad Portfolio of DesignWare IP for 12LP FinFET Process

High-quality DesignWare Interface and Analog IP Optimized for High Performance and Low Power in AI, Cloud Computing, and Mobile SoCs

Efabless Collaborates with GLOBALFOUNDRIES to Enable New IP Development Models for Emerging Applications

Efabless, a crowdsourcing design platform for custom silicon, today announced a joint relationship with GLOBALFOUNDRIES (GF) that will extend Efabless’ design platform, Chiplicity, to include select technology nodes from GF. As part of the collaboration, GF’s 130G, the company’s 130nm process technology platform, ​will be offered on Efabless’ Chiplicity, which includes an IP Development Program that provides IP designers access to EDA tools, infrastructure and prototyping services to accelerate the development of a wide range of IP. Efabless will provide access to GF’s proven 130G technology offering to Efabless’ design partners and community by August 2019.  ​

Analog Bits and GLOBALFOUNDRIES Deliver Differentiated Analog and Mixed Signal IP for High-Performance Mobile and Compute Applications

Analog Bits’ Analog  and Mixed Signal IPs Including Various PLLs, PCIe Reference Clock, Sensors and Power Circuits with GLOBALFOUNDRIES 12nm FinFET (12LP) Enable Customers Lowest System Level Cost & Power

Las Vegas, Nevada June 3, 2019 –

Highlights

  • Analog Bits analog and mixed signal IP design kit is available for GLOBALFOUNDRIES 12nm FinFET to meet customer’s processing needs for compute-intensive applications

  • Join Analog Bits and GLOBALFOUNDRIES at Design Automation Conference in Las Vegas, Nevada on June 3rd to learn more about the 12LP process technology solution

Analog Bits and GLOBALFOUNDRIES (GF) today announced the availability of Analog Bits analog and mixed signal IP design kits for GF’s 12nm Leading-Performance (12LP) process technology.  Through collaboration with GF, the IP portfolio includes wide range fractional Phase-Lock Loop (PLL) with Spread Spectrum Clock Generation (SSCG), PCIe reference clock PLL subsystem, Process, Voltage, and Temperature (PVT) Sensor and Power-On-Reset (POR) circuitry.  Silicon Reports based on these IPs will be available 2Q 2020, and first customer tape-out is expected in 2H 2020.

GF’s 12LP technology is specifically designed to deliver the ultra-high performance and data-processing capacity customers need to support their Compute, Connect and Storage (CCS), AI/ML, high-end consumer and automotive solutions in the era of big data and cognitive computing. The technology, which delivers a 10 percent improvement in logic density and more than a 15 percent improvement in performance compared to the previous FinFET generation, includes new market-focused features specifically designed for automotive electronics and RF/analog applications.

“GF continues to see growing demand for feature rich offerings driven by AI and 5G. Analog and mixed signal IP combined with our 12LP technology offers our customers the differentiated process design creation to address these demands,” said Mark Ireland, vice president of ecosystem partnerships at GF. “By collaborating closely with Analog Bits we are enabling our mutual customers to integrate all IP blocks to reach the target Performance, Power, and Area (PPA) for system level integration and deliver differentiated end products for a broad set of market segments.”

“The analog and mixed signal IP is the knowledge and insight from 20 years working with tier-one semiconductor design teams to understand their needs at the system level,” said Mahesh Tirupattur, executive vice president at Analog Bits. “Our close collaboration with GF gives us the opportunity to help our mutual customers deliver the best possible PPA.  We truly appreciate our years of strategic partnership with GF.”

Resources

To learn more about Analog Bits’ broad range of wide range Fractional N SSCG PLL, PCIe reference clock PLL, PVT Sensor, Power-on-Reset (POR) and other products, visit www.analogbits.com or email us at: [email protected].

About GLOBALFOUNDRIES

GLOBALFOUNDRIES (GF) is a leading full-service foundry delivering truly differentiated semiconductor technologies for a range of high-growth markets. GF provides a unique combination of design, development, and fabrication services, with a range of innovative IP and feature-rich offerings including FinFET, FDX™, RF and analog/mixed signal. With a manufacturing footprint spanning three continents, GF has the flexibility and agility to meet the dynamic needs of clients across the globe. GF is owned by Mubadala Investment Company. For more information, visit www.globalfoundries.com.

About Analog Bits

About Analog Bits: Founded in 1995, Analog Bits, Inc. is the leading supplier of mixed-signal IP with a reputation for easy and reliable integration into advanced SOCs. Our products include precision clocking macros such as PLLs & DLLs, programmable interconnect solutions such as multi-protocol SERDES and programmable I/O’s as well as specialized memories such as high-speed SRAMs and TCAMs. With billions of IP cores fabricated in customer silicon, from 0.35- micron to 14-nm processes, Analog Bits has an outstanding heritage of “first-time-working” with foundries and IDMs.

Editorial Contacts:

Will Wong
Analog Bits
650-314-0200
[email protected]

Erica McGill
GLOBALFOUNDRIES
518-795-5240
[email protected]