网络应用的2.5D到来

作者: Dave Lammers

面对带宽问题,网络公司正在转向转接板、HBM2 DRAM和先进ASIC技术。

当大网络公司开始开发新一级别的兆兆位路由器时,他们都来到了一个“临界点”,“临界点”概念是由The Linley Group的网络分析师Bob Wheeler提出的。

CiscoJuniperNokia, 以及其他大公司在努力从层叠印制电路板DR DRAM中取得足够带宽的同时, 已经发现了针脚数目爆炸式的增长。

网络客户现已可使用由格芯提供的全新14纳米ASIC (FX-14™) 方案,此方案提供载于硅转接板上的高带宽内存(HBM2)链接。Rambus Inc. 公司(位于森尼维尔) 与格芯工程师合作,将 Rambus PHY 整合至 FX-14 ASIC 平台,提供了令人叹为观止的 每秒2 (Tb/s) 的带宽。

“外置内存无法跟上ASIC缓冲的带宽需求,这是已预见的问题,而这就是本问题的解决办法,” Wheeler 说道。 “人们尝试尽可能地使用通用型 DRAM,但是由于针脚数目的爆发式增长,现在我们正面临着一个临界点。”

通讯类ASIC的市场大概为十亿美元,Wheeler 提到, 而路由器是十分昂贵的系统,足以支持转接板 (2.5D) 方案满足高速数据缓冲的成本。

对于层叠PCB上的DDR型DRAM来说,Wheeler 声称 “ASIC的主要问题来自针脚数。设备的针脚数甚至可高达2000。HBM的魅力在于它具备通用的接口,并且包括在封装内一体化提供,无需寻求额外的接口。”

网络以外的市场?

取决于成本是否可以降低, 2.5D (转接板)方案可用于其他应用例如数据处理、高端图像、自动驾驶车辆、人工智能和其他高带宽类方案,格芯封装研发部、业务技术营运部副总裁 Dave McCann如此说道。

向转接板技术转移在排线密度上带来了巨大的进步。对于层叠PCB方案来说,连接线和线之间的空隙为12微米,可是由于垂直过孔50微米是不可取的,大量的空间被浪费在绕过或避免垂直过孔,通常连线密度无法达到理想值。有了硅转接板的帮助,连接线及空隙可达到逻辑芯片背板的级别,约为0.8微米,格芯技术开发高级经理Walter Kocon说道。

要在PHY和HBM2内存间使用逻辑级别的排线,需要依靠包括了光刻在内的晶元级工具。由于转接板比传统芯片更大,多处区域需被拼接在一起。但是 Kocon声称现下的分档器在刻线切换能力上非常出色,在创造更大转接板的道路上也取得了长足进展。

晶元长的工具比传统层叠制程工具要更昂贵,但是回报也同样巨大-芯片上的I/O可高达约1700个。正如McCann提到的,缩小单段排线的距离可将功耗保持在可控制范围,而这是目前仍在使用的层叠序列接口无法做到的。

全方位应用无死角

“由于晶元制造技术(小于1微米)在转接板中的应用,过孔技术得以实现,0.8微米排线和间隙可以在多个层面得到实现,而从根本上来说,并没有过孔无法应用的死角。对于传统PCB来说,排线必须从ASIC引入再回到DIMM卡上,浪费了能源与时间,”McCann说道。而基于转接板的内连接在数量级上更小,设备间的距离只有数百微米,大量的平行排线密度足以支持多兆兆位级别的带宽。

可是在转接板技术上存在制造难题。 “转接板和ASIC本身的尺寸很大。首先,我们必须创造ASIC和转接板之间的接口。拓展属性的匹配是创造合适接口的关键之一。控制扭曲的设计和集成处理尤为重要。将压力均匀散布于转接板和位于其下的叠层也十分重要,否则接口将存在巨大误差。” McCann 说道。

转接板和ASIC之间十分靠近,而焊锡凸块大约为70微米,在这个前提下,控制扭曲是增加2.5D技术产量的关键因素。 “这意味着产品对于扭曲的容忍性将极为有限,” McCann 说道。被推向一起的焊锡或被向反方向拉扯的焊锡将带来链接上的问题。 “我们要求制造加工保证所有分层都为平面,但我们相信在OSAT合作伙伴的帮助下,我们可以满足这个要求。” McCann 说道。

PHY合作

PHY是另一个技术难题,这个难题已被 Rambus和格芯一同克服。 Frank Ferro是Rambus产品市场部高级主管,他解释说,HBM2 PHY是一个混合信号功能,必须针对每个制程节点进行精确设计。

“我们进行了大量的信道建模,并设计了满足各种要求的PHY。而这些都是通过合作开发完成的。我们对于整个制程进行了许多讨论,以确保设计的稳定。项目伊始,让设计成功实现,就是Rambus的(建模和信号完整性)工具和参与到设计这些PHY的所有工程师的目标。”

DDR DRAM支持72数位的带宽,而HBM2支持1024位。1024数位的信号完整性控制极具挑战性,Ferro向格芯工程师们寻求帮助,指望于他们从IBM微电子部门带来的高速信号经验。

当被问及2.5D方案是否将占领整个行业的高速部分,Ferro称这将取决于制造的产量以及HBM2 DRAM的成本减少。 “2.5D 必须经由大批量制造的考验。这是硅技术中极大的一部分,扭曲必须得到控制。”

Tad Wilder是格芯技术员工的高级成员, 他声称2兆兆位每秒的带宽“对于单一核心来说是令人叹为观止的。而总共可放置4块HBM2 PHY的芯片,将为ASIC设计者带来前所未有的8兆兆位每秒的带宽,并具备低功耗低延迟DRAM。”他补充道14纳米 HBM PHY “是我们为ASIC生产过最大的核心,其包含15000外置针脚可接至内存控制器、1700外置针脚可接至转接板各层DRAM的基本晶体。”

每一层DRAM都包含一个基础晶体,与ASIC的HBM2 PHY以及另外高达8个不同叠层的基础晶体进行沟通,链接通过数千个垂直硅过孔(TSV)实现。每层HBM DRAM的总内存可高达32GB。为了减少1000个输入输出开关的噪音信号,ASIC HBM2 PHY可以利用8个128数位信号通道的完全独立性,并通过对每个信号通道的相应时序控制调整来实现。

Linley Group分析师 Wheeler见证了HBM2标准建立所带来的趋势。Hynix是最初的发起者,可是 Wheeler说 Samsung已具备自己的HBM2并愈发强势。由于方案的成本大部分来自于HBM2内存,多个HBM2供应商间将展开激烈竞争,提高产量、降低成本并优化性能。

当被问及是否认为2.5D方案将进一步普及,McCann说 “这是本时代一个非常伟大的技术,并能带来巨大的回报。问题是,我们是否能降低成本并提高产量?”

关于作者

Dave Lammers
Dave Lammers是固态技术特约撰稿人,也是格芯的Foundry Files的特约博客作者。他于20世界80年代早期在美联社东京分社工作期间开始撰写关于半导体行业的文章,彼时该行业正经历快速发展。他于1985年加入E.E. Times,定居东京,在之后的14年内,足迹遍及日本、韩国和台湾。1998年,Dave与他的妻子Mieko以及4个孩子移居奥斯丁,为E.E Times开设德克萨斯办事处。Dave毕业于美国圣母大学,获得密苏里大学新闻学院新闻学硕士学位。